77 research outputs found

    Strain engineering of the silicon-vacancy center in diamond

    Get PDF
    We control the electronic structure of the silicon-vacancy (SiV) color-center in diamond by changing its static strain environment with a nano-electro-mechanical system. This allows deterministic and local tuning of SiV optical and spin transition frequencies over a wide range, an essential step towards multi-qubit networks. In the process, we infer the strain Hamiltonian of the SiV revealing large strain susceptibilities of order 1 PHz/strain for the electronic orbital states. We identify regimes where the spin-orbit interaction results in a large strain suseptibility of order 100 THz/strain for spin transitions, and propose an experiment where the SiV spin is strongly coupled to a nanomechanical resonator

    High Natality Rates of Endangered Steller Sea Lions in Kenai Fjords, Alaska and Perceptions of Population Status in the Gulf of Alaska

    Get PDF
    Steller sea lions experienced a dramatic population collapse of more than 80% in the late 1970s through the 1990s across their western range in Alaska. One of several competing hypotheses about the cause holds that reduced female reproductive rates (natality) substantively contributed to the decline and continue to limit recovery in the Gulf of Alaska despite the fact that there have been very few attempts to directly measure natality in this species. We conducted a longitudinal study of natality among individual Steller sea lions (n = 151) at a rookery and nearby haulouts in Kenai Fjords, Gulf of Alaska during 2003–2009. Multi-state models were built and tested in Program MARK to estimate survival, resighting, and state transition probabilities dependent on whether or not a female gave birth in the previous year. The models that most closely fit the data suggested that females which gave birth had a higher probability of surviving and giving birth in the following year compared to females that did not give birth, indicating some females are more fit than others. Natality, estimated at 69%, was similar to natality for Steller sea lions in the Gulf of Alaska prior to their decline (67%) and much greater than the published estimate for the 2000s (43%) which was hypothesized from an inferential population dynamic model. Reasons for the disparity are discussed, and could be resolved by additional longitudinal estimates of natality at this and other rookeries over changing ocean climate regimes. Such estimates would provide an appropriate assessment of a key parameter of population dynamics in this endangered species which has heretofore been lacking. Without support for depressed natality as the explanation for a lack of recovery of Steller sea lions in the Gulf of Alaska, alternative hypotheses must be more seriously considered

    Acquired Type III Secretion System Determines Environmental Fitness of Epidemic Vibrio parahaemolyticus in the Interaction with Bacterivorous Protists

    Get PDF
    Genome analyses of marine microbial communities have revealed the widespread occurrence of genomic islands (GIs), many of which encode for protein secretion machineries described in the context of bacteria-eukaryote interactions. Yet experimental support for the specific roles of such GIs in aquatic community interactions remains scarce. Here, we test for the contribution of type III secretion systems (T3SS) to the environmental fitness of epidemic Vibrio parahaemolyticus. Comparisons of V. parahaemolyticus wild types and T3SS-defective mutants demonstrate that the T3SS encoded on genome island VPaI-7 (T3SS-2) promotes survival of V. parahaemolyticus in the interaction with diverse protist taxa. Enhanced persistence was found to be due to T3SS-2 mediated cytotoxicity and facultative parasitism of V. parahaemolyticus on coexisting protists. Growth in the presence of bacterivorous protists and the T3SS-2 genotype showed a strong correlation across environmental and clinical isolates of V. parahaemolyticus. Short-term microcosm experiments provide evidence that protistan hosts facilitate the invasion of T3SS-2 positive V. parahaemolyticus into a coastal plankton community, and that water temperature and productivity further promote enhanced survival of T3SS-2 positive V. parahaemolyticus. This study is the first to describe the fitness advantage of GI-encoded functions in a microbial food web, which may provide a mechanistic explanation for the global spread and the seasonal dynamics of V. parahaemolyticus pathotypes, including the pandemic serotype cluster O3:K6, in aquatic environments

    Venous endothelial injury in central nervous system diseases

    Full text link

    Methane chemical vapor deposition on transition metal/GaAs samples - a possible route to Haeckelite carbon nanotubes?

    No full text
    We present a systematic study of atmospheric chemical vapor deposition growth of carbon nanotubes (CNTs) on patterned, transition metal/GaAs samples employing methane as the carbon feedstock. Controlled CNT growth was found to occur from the exposed metal-semiconductor interface, rather than from the metal or semiconductor surfaces themselves. A fast sample loading system allowed for a minimization of the exposure to high temperatures, thereby preventing excessive sample damage. The optimum growth temperature for CrNi/GaAs interfaces is 700 °C (at a methane flow rate of 700 sccm). Possible growth scenarios involving the Ni-As-Ga system and its interaction with C is discussed. Raman spectroscopy of the CNTs revealed the presence of pentagon-heptagon defects. Closer analysis of the spectra points towards a mixture of so-called Haeckelite CNTs. © 2011 John Wiley and Sons, Ltd

    Development of an electronic nose sensing platform for undergraduate education in nanotechnology

    No full text
    The teaching of the different aspects of a sensor system, with a focus on the involved nanotechnology, is a challenging, yet important task. We present the development of an electronic nose system that utilizes a nanoscale amperometric sensing mechanism for gas mixtures. The fabrication of the system makes use of a basic microfabrication facility, as well as an undergraduate chemistry laboratory for material synthesis and preparation. The sensing device consists of an array of cross-reactive sensors composed of metal-oxide semiconducting nanoparticles. Each sensor in the array produces a unique response in the presence of a target gas, allowing the sensor to determine the identity and concentration of multiple gases in a mixture. The educational aspects include microheater simulation and fabrication, design and fabrication of interdigitated electrodes, development of interfacing circuitry and software, development and calibration of a sensory array, sol-gel processing of nanoparticle films and their characterization, and details of the fundamental chemical sensing mechanism. © 2011 IOP Publishing Ltd

    Nanosized Nanocrystalline and Nanotwinned Metals

    No full text
    Traditionally, the most fundamental principle in materials science is that the properties of materials are strongly influenced by their internal microstructure [1]. During the plastic deformation of many metallic systems, dislocations carry most of the plasticity and hence their interactions with the internal microstructure, such as grain boundaries, solute atoms, precipitation or even other dislocations, are the most influential in determining mechanical responses of those materials [2]. However, recent studies found that the microstructure is not the only factor that affects the mechanical properties, but the external dimension of the specimen also significantly changes the mechanical behavior when it is reduced to the submicron and nanometer scale [3]. Therefore, when the effects from those two factors, microstructure and specimen size at the nanoscale, are combined, the materials often exhibit very unique properties distinguished from both of the bulk samples containing same kind of microstructure and nano-samples not containing the corresponding microstructure [3]. Especially, the homogeneous internal interfaces, such as ordinary grain boundary (GB) and coherent twin boundary (TB), are one of the most interesting microstructures as their interaction to dislocations is a key parameter in understanding plasticity of metallic materials. In this entry, the review of the recent studies investigating the mechanical properties of nano-sized metallic samples containing ordinary GBs and coherent TBs is presented. The main focus is placed on the results from uniaxial tension/compression experiments on the nanometer-sized pillar-shaped specimen (nano-pillars). Fabrication techniques to produce the nano-pillars with various internal interfaces are also introduced
    corecore