59 research outputs found

    Influence of the incremental step size in work rate on exercise response and gas exchange in patients with pulmonary hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiopulmonary exercise testing (CPET) has become increasingly important as a routine procedure in daily clinical work. So far, it is generally accepted that an individualized exercise protocol with exercise duration of 6 to 12 minutes is preferable to assess maximal exercise performance. The aim of this study was to compare an individualized NYHA adapted exercise protocol with a fixed standard protocol in patients with severe pulmonary arterial hypertension.</p> <p>Methods</p> <p>Twenty-two patients (17 female, 5 male; mean age 49 ± 14 yrs) underwent symptom limited CPET on a bicycle. On two consecutive days each subject performed a stepwise CPET according to a modified Jones protocol (16 Watt per minute stages) as well as an individualized NYHA adapted protocol with 5 or 10 Watt/min stages in a randomized order. Oxygen uptake at peak exercise (peakVO<sub>2</sub>) and anaerobic threshold (VO<sub>2</sub>AT), maximal ventilation (VE), breathing reserve (VE/MVV), ventilatory efficiency (VE vs. VCO<sub>2 </sub>slope), exercise time, maximal power and work rate were assessed and compared between both protocols.</p> <p>Results</p> <p>Comparing both, adapted NYHA protocol and standardized Jones protocol, we found significant differences in maximal power (56.7 ± 19 W vs. 74 ± 18 W; p < 0.001) and exercise time (332 ± 107 sec. vs. 248 ± 72 sec.; p < 0.001). In contrast, no significant differences were obvious comparing both protocols concerning work rate, VE, VE/MVV, peakVO<sub>2</sub>, VO<sub>2</sub>AT and VE vs. VCO<sub>2 </sub>slope.</p> <p>Conclusion</p> <p>Variations of incremental step size during CPET significantly affect exercise time and maximal power, whereas relevant parameters for clinical judgement and prognosis such as oxygen uptake, ventilation and ventilatory efficiency remain unchanged. These findings have practical implications for the exercise evaluation of patients with pulmonary hypertension. To reach maximal results for ventilation, oxygen uptake and gas exchange an individualization of incremental step size appears not to be mandatory.</p

    Handcycling: training effects of a specific dose of upper body endurance training in females

    Get PDF
    Purpose: This study aims to evaluate a handcycling training protocol based on ACSM guidelines in a well-controlled laboratory setting. Training responses of a specific dose of handcycling training were quantified in a homogeneous female subject population to obtain a more in depth understanding of physiological mechanisms underlying adaptations in upper body training. Methods: 22 female able-bodied participants were randomly divided in a training (T) and control group (C). T received 7-weeks of handcycling training, 3 × 30 min/week at 65 % heart rate reserve (HRR). An incremental handcycling test was used to determine local, exercise-specific adaptations. An incremental cycling test was performed to determine non-exercise-specific central/cardiovascular adaptations. Peak oxygen uptake (peakVO2), heart rate (peakHR) and power output (peakPO) were compared between T and C before and after training. Results: T completed the training sessions at 65 ± 3 % HRR, at increasing power output (59.4 ± 8.2 to 69.5 ± 8.9 W) over the training program. T improved on handcycling peakVO2 (+18.1 %), peakPO (+31.9 %), and peakHR (+4.0 %). No improvements were found in cycling parameters. Conclusion: Handcycling training led to local, exercise-specific improvements in upper body parameters. Results could provide input for the design of effective evidence-based training programs specifically aimed at upper body endurance exercise in females
    corecore