108 research outputs found
HO2 + NO2: Kinetics, Thermochemistry, and Evidence for a Bimolecular Product Channel
A master equation (ME) analysis of available experimental data has been carried out on the reaction HO2 + NO2 + M ⇋ HO2NO2 + M (1a)/(−1a). The analysis, based on the ME code MESMER, uses both the association and dissociation kinetic data from the literature, and provides improved thermochemistry on reaction 1a. Our preferred model assigns two low-frequency vibrations of HO2NO2 as hindered rotors and couples these to the external rotations. This model gives ΔrH°0(1a) = −93.9 ± 1.0 kJ mol–1, which implies that ΔfH°0 HO2NO2 = −42.0 ± 1.0 kJ mol–1 (uncertainties are 2σ). A significant contributor to the uncertainty derives from modeling the interaction between the internal and external rotors. Using this improved kinetics for reaction 1a/–1a, data at elevated temperatures, 353–423 K, which show no evidence of the expected equilibration, have been reanalyzed, indicating that an additional reaction is occurring that masks the equilibration. Based on a published ab initio study, this additional channel is assigned to the bimolecular reaction HO2 + NO2 → H–NO2 + O2 (1b); H–NO2 is nitryl hydride and has not previously been directly observed in experiments. The output of the master equation analysis has been parametrized and Troe expressions are provided for an improved description of k1a(p,T) and k–1a(p,T)
Plantar plate pathology is associated with erosive disease in the painful forefoot of patients with rheumatoid arthritis
Background: Disease-related foot pathology is recognised to have a significant impact on mobility and functional capacity in the majority of patients with rheumatoid arthritis (RA). The forefoot is widely affected and the metatarsophalangeal (MTP) joints are the most common site of symptoms. The plantar plates are the fibrocartilaginous distal attachments of the plantar fascia inserting into the five proximal phalanges. Together with the transverse metatarsal ligament they prevent splaying of the forefoot and subluxation of the MTP joints. Damage to the plantar plates is a plausible mechanism therefore, through which the forefoot presentation, commonly described as ‘walking on pebbles’, may develop in patients with RA. The aims of this study were to investigate the relationship between plantar plate pathology and clinical, biomechanical and plain radiography findings in the painful forefoot of patients with RA. Secondly, to compare plantar plate pathology at the symptomatic lesser (2nd-5th) MTP joints in patients with RA, with a group of healthy age and gender matched control subjects without foot pain. Methods: In 41 patients with RA and ten control subjects the forefoot was imaged using 3T MRI. Intermediate weighted fat-suppressed sagittal and short axis sequences were acquired through the lesser MTP joints. Images were read prospectively by two radiologists and consensus reached. Plantar plate pathology in patients with RA was compared with control subjects. Multivariable multilevel modelling was used to assess the association between plantar plate pathology and the clinical, biomechanical and plain radiography findings. Results: There were significant differences between control subjects and patients with RA in the presence of plantar plate pathology at the lesser MTP joints. No substantive or statistically significant associations were found between plantar plate pathology and clinical and biomechanical findings. The presence of plantar plate pathology was independently associated with an increase in the odds of erosion (OR = 52.50 [8.38–326.97], p < 0.001). Conclusion: The distribution of plantar plate pathology at the lesser MTP joints in healthy control subjects differs to that seen in patients with RA who have the consequence of inflammatory disease in the forefoot. Longitudinal follow-up is required to determine the mechanism and presentation of plantar plate pathology in the painful forefoot of patients with RA
A study of data-driven momentum and disposition effects in the Chinese stock market by functional data analysis
We apply a functional data analysis approach to decompose the cross-sectional Fama–French three-factor model residuals in the Chinese stock market. Our results indicate that other than Fama–French three factors, there are two orthonormal asset pricing factors describing the behavioral biases in their historical performances: between winner and loser stocks, and extreme and mediocre-performing stocks, respectively. We explain these two factors through investors’ overreaction, overconfidence and the lead-lag effect. These findings empirically show the existence of momentum and disposition effects in the Chinese stock market. A buy-and-hold mean-variance optimized portfolio incorporating these two market anomalies boosts the Sharpe ratio to 1.27
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
The Mass Distribution and Rotation Curve in the Galaxy
The mass distribution in the Galaxy is determined by dynamical and
photometric methods. Rotation curves are the major tool for determining the
dynamical mass distribution in the Milky Way and spiral galaxies. The
photometric (statistical) method utilizes luminosity profiles from optical and
infrared observations, and assumes empirical values of the mass-to-luminosity
(M/L) ratio to convert the luminosity to mass. In this chapter the dynamical
method is described in detail, and rotation curves and mass distribution in the
Milky Way and nearby spiral galaxies are presented. The dynamical method is
categorized into two methods: the decomposition method and direct method. The
former fits the rotation curve by calculated curve assuming several mass
components such as a bulge, disk and halo, and adjust the dynamical parameters
of each component. Explanations are given of the mass profiles as the de
Vaucouleurs law, exponential disk, and dark halo profiles inferred from
numerical simulations. Another method is the direct method, with which the mass
distribution can be directly calculated from the data of rotation velocities
without employing any mass models. Some results from both methods are
presented, and the Galactic structure is discussed in terms of the mass.
Rotation curves and mass distributions in external galaxies are also discussed,
and the fundamental mass structures are shown to be universal.Comment: 54 pages, 25 figures, in 'Planets, Stars and Stellar Systems',
Springer, Vol. 5, ed. G. Gilmore, Chap. 19. Note: Preprint with full figures
is available from http://www.ioa.s.u-tokyo.ac.jp/~sofue/htdocs/2013psss
Transforming growth factor beta signaling: The master sculptor of fingers
Transforming growth factor beta (TGF?) constitutes a large and evolutionarily conserved superfamily of secreted factors that play essential roles in embryonic development, cancer, tissue regeneration, and human degenerative pathology. Studies of this signaling cascade in the regulation of cellular and tissue changes in the three-dimensional context of a developing embryo have notably advanced in the understanding of the action mechanism of these growth factors. In this review, we address the role of TGF? signaling in the developing limb, focusing on its essential function in the morphogenesis of the autopod. As we discuss in this work, modern mouse genetic experiments together with more classical embryological approaches in chick embryos, provided very valuable information concerning the role of TGF? and Activin family members in the morphogenesis of the digits of tetrapods, including the formation of phalanxes, digital tendons, and interphalangeal joints. We emphasize the importance of the Activin and TGF? proteins as digit inducing factors and their critical interaction with the BMP signaling to sculpt the hand and foot morphology
Mapping Peptidergic Cells in Drosophila: Where DIMM Fits In
The bHLH transcription factor DIMMED has been associated with the differentiation of peptidergic cells in Drosophila. However, whether all Drosophila peptidergic cells express DIMM, and the extent to which all DIMM cells are peptidergic, have not been determined. To address these issues, we have mapped DIMM expression in the central nervous system (CNS) and periphery in the late larval stage Drosophila. At 100 hr after egg-laying, DIMM immunosignals are largely congruent with a dimm-promoter reporter (c929-GAL4) and they present a stereotyped pattern of 306 CNS cells and 52 peripheral cells. We assigned positional values for all DIMM CNS cells with respect to reference gene expression patterns, or to patterns of secondary neuroblast lineages. We could assign provisional peptide identities to 68% of DIMM-expressing CNS cells (207/306) and to 73% of DIMM-expressing peripheral cells (38/52) using a panel of 24 markers for Drosophila neuropeptide genes. Furthermore, we found that DIMM co-expression was a prevalent feature within single neuropeptide marker expression patterns. Of the 24 CNS neuropeptide gene patterns we studied, six patterns are >90% DIMM-positive, while 16 of 22 patterns are >40% DIMM-positive. Thus most or all DIMM cells in Drosophila appear to be peptidergic, and many but not all peptidergic cells express DIMM. The co-incidence of DIMM-expression among peptidergic cells is best explained by a hypothesis that DIMM promotes a specific neurosecretory phenotype we term LEAP. LEAP denotes Large cells that display Episodic release of Amidated Peptides
- …