472 research outputs found

    Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal CT with dense dilated networks

    Get PDF
    Segmentation of anatomy on abdominal CT enables patient-specific image guidance in clinical endoscopic procedures and in endoscopy training. Because robust interpatient registration of abdominal images is necessary for existing multi-atlas- and statistical-shape-model-based segmentations, but remains challenging, there is a need for automated multi-organ segmentation that does not rely on registration. We present a deep-learning-based algorithm for segmenting the liver, pancreas, stomach, and esophagus using dilated convolution units with dense skip connections and a new spatial prior. The algorithm was evaluated with an 8-fold cross-validation and compared to a joint-label-fusion-based segmentation based on Dice scores and boundary distances. The proposed algorithm yielded more accurate segmentations than the joint-label-fusion-ba sed algorithm for the pancreas (median Dice scores 66 vs 37), stomach (83 vs 72) and esophagus (73 vs 54) and marginally less accurate segmentation for the liver (92 vs 93). We conclude that dilated convolutional networks with dense skip connections can segment the liver, pancreas, stomach and esophagus from abdominal CT without image registration and have the potential to support image-guided navigation in gastrointestinal endoscopy procedures

    Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures

    Get PDF
    PURPOSE: Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. METHODS: A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. RESULTS: The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). CONCLUSIONS: The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting

    Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound

    Get PDF
    Endoscopic ultrasound (EUS) is a minimally-invasive imaging technique that can be technically difficult to perform due to the small field of view and uncertainty in the endoscope position. Electromagnetic (EM) tracking is emerging as an important technology in guiding endoscopic interventions and for training in endotherapy by providing information on endoscope location by fusion with pre-operative images. However, the accuracy of EM tracking could be compromised by the endoscopic ultrasound transducer. In this work, we quantify the precision and accuracy of EM tracking sensors inserted into the working channel of a flexible endoscope, with the ultrasound transducer turned on and off. The EUS device was found to have little (no significant) effect on static tracking accuracy although jitter increased significantly. A significant change in the measured distance between sensors arranged in a fixed geometry was found during a dynamic acquisition. In conclusion, EM tracking accuracy was not found to be significantly affected by the flexible endoscope

    Automatic Multi-organ Segmentation on Abdominal CT with Dense V-networks

    Get PDF
    Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher accuracy for most abdominal organs. We present a registration-free deeplearning- based segmentation algorithm for eight organs that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the pancreas, the GI tract (esophagus, stomach, duodenum) and surrounding organs (liver, spleen, left kidney, gallbladder). We directly compared the segmentation accuracy of the proposed method to existing deep learning and MALF methods in a cross-validation on a multi-centre data set with 90 subjects. The proposed method yielded significantly higher Dice scores for all organs and lower mean absolute distances for most organs, including Dice scores of 0.78 vs. 0.71, 0.74 and 0.74 for the pancreas, 0.90 vs 0.85, 0.87 and 0.83 for the stomach and 0.76 vs 0.68, 0.69 and 0.66 for the esophagus. We conclude that deep-learning-based segmentation represents a registration-free method for multi-organ abdominal CT segmentation whose accuracy can surpass current methods, potentially supporting image-guided navigation in gastrointestinal endoscopy procedures

    Deep residual networks for automatic segmentation of laparoscopic videos of the liver

    Get PDF
    MOTIVATION: For primary and metastatic liver cancer patients undergoing liver resection, a laparoscopic approach can reduce recovery times and morbidity while offering equivalent curative results; however, only about 10% of tumours reside in anatomical locations that are currently accessible for laparoscopic resection. Augmenting laparoscopic video with registered vascular anatomical models from pre-procedure imaging could support using laparoscopy in a wider population. Segmentation of liver tissue on laparoscopic video supports the robust registration of anatomical liver models by filtering out false anatomical correspondences between pre-procedure and intra-procedure images. In this paper, we present a convolutional neural network (CNN) approach to liver segmentation in laparoscopic liver procedure videos. METHOD: We defined a CNN architecture comprising fully-convolutional deep residual networks with multi-resolution loss functions. The CNN was trained in a leave-one-patient-out cross-validation on 2050 video frames from 6 liver resections and 7 laparoscopic staging procedures, and evaluated using the Dice score. RESULTS: The CNN yielded segmentations with Dice scores ≥0.95 for the majority of images; however, the inter-patient variability in median Dice score was substantial. Four failure modes were identified from low scoring segmentations: minimal visible liver tissue, inter-patient variability in liver appearance, automatic exposure correction, and pathological liver tissue that mimics non-liver tissue appearance. CONCLUSION: CNNs offer a feasible approach for accurately segmenting liver from other anatomy on laparoscopic video, but additional data or computational advances are necessary to address challenges due to the high inter-patient variability in liver appearance

    Locally rigid, vessel-based registration for laparoscopic liver surgery

    Get PDF
    Purpose: Laparoscopic liver resection has significant advantages over open surgery due to less patient trauma and faster recovery times, yet is difficult for most lesions due to the restricted field of view and lack of haptic feedback. Image guidance provides a potential solution but is challenging in a soft deforming organ such as the liver. In this paper, we therefore propose a laparoscopic ultrasound (LUS) image guidance system and study the feasibility of a locally rigid registration for laparoscopic liver surgery. Methods: We developed a real-time segmentation method to extract vessel centre points from calibrated, freehand, electromagnetically tracked, 2D LUS images. Using landmark-based initial registration and an optional iterative closest point (ICP) point-to-line registration, a vessel centre-line model extracted from preoperative computed tomography (CT) is registered to the ultrasound data during surgery. Results: Using the locally rigid ICP method, the RMS residual error when registering to a phantom was 0.7 mm, and the mean target registration error (TRE) for two in vivo porcine studies was 3.58 and 2.99 mm, respectively. Using the locally rigid landmark-based registration method gave a mean TRE of 4.23 mm using vessel centre lines derived from CT scans taken with pneumoperitoneum and 6.57 mm without pneumoperitoneum. Conclusion: In this paper we propose a practical image-guided surgery system based on locally rigid registration of a CT-derived model to vascular structures located with LUS. In a physical phantom and during porcine laparoscopic liver resection, we demonstrate accuracy of target location commensurate with surgical requirements. We conclude that locally rigid registration could be sufficient for practically useful image guidance in the near future

    Distinguishing personal use of drugs from drug supply: Approaches and challenges

    Full text link
    The ability to fairly and justly distinguish between drug possession for personal use and drug possession for supply is a central feature of drug laws across the globe. Whether such distinctions pertain to decriminalisation of simple possession, or to the penalties associated with drug offences, such differentiation remains a core problem for policymakers. In this commentary, taking 91 different jurisdictions into consideration, we identify five different approaches to distinguishing personal use from supply: four of these involved quantification of an amount of drug (whether in weight or number of doses). The other approach relied on case-by-case judgement. Drawing upon survey data of drug use from nine countries, we provide an example of how the quantity bears little resemblance to drug use patterns, and does not take heterogeneity of drug use into account. While the non-quantified approach can lead to discriminatory and racialised policing, all of the quantification approaches also pose problems, largely concerned with arbitrary amounts. There appears to be no perfect way to differentiate possession for personal use from intentions to supply. This commentary opens up a number of important policy-relevant research questions given this central feature of drug policy design

    Weakly Supervised Localisation of Prostate Cancer Using Reinforcement Learning for Bi-Parametric MR Images

    Get PDF
    In this paper we propose a reinforcement learning based weakly supervised system for localisation. We train a controller function to localise regions of interest within an image by introducing a novel reward definition that utilises non-binarised classification probability, generated by a pre-trained binary classifier which classifies object presence in images or image crops. The object-presence classifier may then inform the controller of its localisation quality by quantifying the likelihood of the image containing an object. Such an approach allows us to minimize any potential labelling or human bias propagated via human labelling for fully supervised localisation. We evaluate our proposed approach for a task of cancerous lesion localisation on a large dataset of real clinical bi-parametric MR images of the prostate. Comparisons to the commonly used multiple-instance learning weakly supervised localisation and to a fully supervised baseline show that our proposed method outperforms the multi-instance learning and performs comparably to fully-supervised learning, using only image-level classification labels for training

    Application of a universal parasite diagnostic test to biological specimens collected from animals.

    Get PDF
    A previously described universal parasite diagnostic (nUPDx) based on PCR amplification of the 18S rDNA and deep-amplicon sequencing, can detect human blood parasites with a sensitivity comparable to real-time PCR. To date, the efficacy of this assay has only been assessed on human blood. This study assessed the utility of nUPDx for the detection of parasitic infections in animals using blood, tissues, and other biological sample types from mammals, birds, and reptiles, known to be infected with helminth, apicomplexan, or pentastomid parasites (confirmed by microscopy or PCR), as well as negative samples. nUPDx confirmed apicomplexan and/or nematode infections in 24 of 32 parasite-positive mammals, while also identifying several undetected coinfections. nUPDx detected infections in 6 of 13 positive bird and 1 of 2 positive reptile samples. When applied to 10 whole parasite specimens (worms and arthropods), nUPDx identified all to the genus or family level, and detected one incorrect identification made by morphology. Babesia sp. infections were detected in 5 of the 13 samples that were negative by other diagnostic approaches. While nUPDx did not detect PCR/microscopy-confirmed trichomonads or amoebae in cloacal swabs/tissue from 8 birds and 2 reptiles due to primer template mismatches, 4 previously undetected apicomplexans were detected in these samples. Future efforts to improve the utility of the assay should focus on validation against a larger panel of tissue types and animal species. Overall, nUPDx shows promise for use in both veterinary diagnostics and wildlife surveillance, especially because species-specific PCRs can miss unknown or unexpected pathogens
    corecore