1,740 research outputs found

    Three-dimensional bulk band dispersion in polar BiTeI with giant Rashba-type spin splitting

    Full text link
    In layered polar semiconductor BiTeI, giant Rashba-type spin-split band dispersions show up due to the crystal structure asymmetry and the strong spin-orbit interaction. Here we investigate the 3-dimensional (3D) bulk band structures of BiTeI using the bulk-sensitive hνh\nu-dependent soft x-ray angle resolved photoemission spectroscopy (SX-ARPES). The obtained band structure is shown to be well reproducible by the first-principles calculations, with huge spin splittings of 300{\sim}300 meV at the conduction-band-minimum and valence-band-maximum located in the kz=π/ck_z=\pi/c plane. It provides the first direct experimental evidence of the 3D Rashba-type spin splitting in a bulk compound.Comment: 9 pages, 4 figure

    Carbon Waste Powder Prepared from Carbon Rod Waste of Zinc-Carbon Batteries for Methyl Orange Adsorption

    Get PDF
    A research on the preparation of Carbon Waste Powder, CWP, was conducted and made from carbon rod waste which was extracted from used zinc-carbon batteries. This research was an effort to overcome environmental problem caused by battery waste by converting into adsorbent for methyl orange (MO) that frequently used by textile industries. The prepared powder was then analyzed to understand its characteristic peaks, crystallinity, and to compare the properties with other carbonaceous forms, i.e. a commercial Carbon Paper (CP), and a commercial meso- carbon micro-beads (MCMB). The analysis found that CWP is dominated by graphitic carbon. An adsorption experiment was then conducted to study their adsorption ability to methyl orange solution. The result found that those three carbonaceous materials have the ability to adsorb methyl orange with different activities. MCMB has the highest adsorption capacity of 0.197 mg.g-1. Meanwhile, CWP and CP show adsorption capacity of 0.066 mg.g-1 and 0.062 mg.g-1, respectively. Methyl orange adsorption on CWP and CP were under second order, which means the adsorption could be four times faster as the MO solution doubled. Moreover, the rate constant of MO adsorption on CWP is 8×10-4 min-1, which was higher than the rate constant of MO adsorption on CP. It confirmed that the CWP can be used as a promising adsorbent for dye waste water. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Imaging mass spectrometry detects dynamic changes of phosphatidylcholine in rat hippocampal CA1 after transient global ischemia

    Get PDF
    AbstractBackground and purpose: The initial steps in the cascade leading to cell death are still unknown because of the limitations of the existing methodology, strategy, and modalities used. Methods: Imaging mass spectrometry (IMS) was used to measure dynamic molecular changes of phosphatidylcholine (PC) species in the rat hippocampus after transient global ischemia (TGI) for 6min. Fresh frozen sections were obtained after euthanizing the rats on Days 1, 2, 4, 7, 10, 14, and 21. Histopathology and IMS of adjacent sections compared morphological and molecular changes, respectively. Results: Histopathological changes were absent immediately after TGI (at Day 1, superacute phase). At Days 2–21 after TGI (from subacute to chronic phases), histopathology revealed neuronal death associated with gliosis, inflammation, and accumulation of activated microglia in CA1. IMS detected significant molecular changes after TGI in the same CA1 domain: increase of PC (diacyl-16:0/22:6) in the superacute phase and increase of PC (diacyl-16:0/18:1) in the subacute to chronic phases. Conclusions: Histopathology and IMS can provide comprehensive and complementary information on cell death mechanisms in the hippocampal CA1 after global ischemia. IMS provided novel data on molecular changes in phospholipids immediately after TGI. Increased level of PC (diacyl-16:0/22:6) in the pyramidal cell layer of hippocampal CA1 prior to the histopathological change may represent an early step in delayed neuronal death mechanisms
    corecore