46 research outputs found

    Microstructure, Mechanical Properties and Fracture Behavior of α Particle Irradiated Type 316 Stainless Steel

    Get PDF
    The present work is a research of the effect of helium on the microstructure, mechanical properties and fracture behaviors of a type 316 austenitic steel. Helium implantation was performed by 30-MeV α-particle injection on very small size specimens, using a cyclotron. Average helium content in a He-deposited region was up to 2000 appm He. In the case of 2000appm He implantation, intergranular fracture was sometimes observed on the helium deposited region after tensile test at room temperature. At elevated temperature test, however, this material showed the transition of fracture mode from transgranular-ductile fracture at 773K to intergranular fracture at 873. In the case of 500 appm He implantation, the transition of fracture mode was recognized at a temperature range of 873K to 973K

    Successful Re-administration of Osimertinib in Osimertinib-induced Interstitial Lung Disease with an Organizing Pneumonia Pattern: A Case Report and Literature Review

    Get PDF
    Osimertinib is the standard therapy for epidermal-growth-factor-receptor (EGFR)-mutant lung cancers. We herein report a case of osimertinib-induced interstitial lung disease (OsiILD) with an organizing pneumonia (OP) pattern and provide a literature-based review. Six months after osimertinib administration, a 75-year-old woman with right pleural carcinomatosis developed ILD with an OP pattern. After salvage chemotherapy, osimertinib with corticosteroid was successfully re-administered. A literature review suggested that 1) OsiILD with an OP pattern was rare but should be recognized, and 2) re-administration of osimertinib in OsiILD was successful in select patients. A criterion that determines whether a patient would benefit from re-administration is warranted

    A case of axillary lymphadenitis caused by Mycobacterium intracellulare in an immunocompetent patient

    Get PDF
    Axillary lymphadenitis caused by non-tuberculous mycobacteria is rare and has been reported in immunocompromised hosts. Herein, we report the case of a 67-year-old man without immunodeficiency who developed right axillary lymphadenitis caused by Mycobacterium intracellulare and showed a small nodular shadow in the left pulmonary apex. Biopsy of the right axillary lymph node revealed several epithelioid granulomas, and the culture of the lymph node aspirate yielded Mycobacterium intracellulare. The lymph node lesion and left lung apex shadow resolved spontaneously after careful outpatient monitoring. This case suggests that axillary lymphadenitis could be caused by Mycobacterium intracellulare in an immunocompetent patient

    Immunological Changes in Mesothelioma Patients and Their Experimental Detection

    Get PDF
    It is common knowledge that asbestos exposure causes asbestos-related diseases such as asbestosis, lung cancer and malignant mesothelioma (MM) not only in people who have handled asbestos in the work environment, but also in residents living near factories that handle asbestos. These facts have been an enormous medical and social problem in Japan since the summer of 2005. We focused on the immunological effects of asbestos and silica on the human immune system. In this brief review, we present immunological changes in patients with MM and outline their experimental detection. For example, there is over-expression of bcl-2 in CD4+ peripheral T-cells, high plasma concentrations of interleukin (IL)-10 and transforming growth factor (TGF)-ß, and multiple over-representation of T cell receptor (TcR)-Vß in peripheral CD3+ T-cells found in MM patients. We also detail an experimental long-term exposure T-cell model. Analysis of the immunological effects of asbestos may help our understanding of the biological effects of asbestos

    Identification of targetable kinases in idiopathic pulmonary fibrosis

    Get PDF
    Background Tyrosine kinase activation plays an important role in the progression of pulmonary fibrosis. In this study, we analyzed the expression of 612 kinase-coding and cancer-related genes using next-generation sequencing to identify potential therapeutic targets for idiopathic pulmonary fibrosis (IPF). Methods Thirteen samples from five patients with IPF (Cases 1-5) and eight samples from four patients without IPF (control) were included in this study. Six of the thirteen samples were obtained from different lung segments of a single patient who underwent bilateral pneumonectomy. Gene expression analysis of IPF lung tissue samples (n = 13) and control samples (n = 8) was performed using SureSelect RNA Human Kinome Kit. The expression of the selected genes was further confirmed at the protein level by immunohistochemistry (IHC). Results Gene expression analysis revealed a correlation between the gene expression signatures and the degree of fibrosis, as assessed by Ashcroft score. In addition, the expression analysis indicated a stronger heterogeneity among the IPF lung samples than among the control lung samples. In the integrated analysis of the 21 samples, DCLK1 and STK33 were found to be upregulated in IPF lung samples compared to control lung samples. However, the top most upregulated genes were distinct in individual cases. DCLK1, PDK4, and ERBB4 were upregulated in IPF case 1, whereas STK33, PIM2, and SYK were upregulated in IPF case 2. IHC revealed that these proteins were expressed in the epithelial layer of the fibrotic lesions. Conclusions We performed a comprehensive kinase expression analysis to explore the potential therapeutic targets for IPF. We found that DCLK1 and STK33 may serve as potential candidate targets for molecular targeted therapy of IPF. In addition, PDK4, ERBB4, PIM2, and SYK might also serve as personalized therapeutic targets of IPF. Additional large-scale studies are warranted to develop personalized therapies for patients with IPF

    Purification of enzymatically inactive peptidylarginine deiminase type 6 from mouse ovary that reveals hexameric structure different from other dimeric isoforms

    Get PDF
    The murine peptidylarginine deiminase (PAD) has five isoforms encoded by different genes and partici- pates in a variety of cellular functions through the citrullination of target proteins. The crystal structure of human PAD4 with a dimeric form was previously solved because of the enzyme’s relevance to rheuma- toid arthritis. PAD6, abundant in mouse oocytes and eggs, is believed to take part in early events of embryogenesis, but its biochemical properties are little understood. Here we have purified and charac- terized a recombinant PAD6. A PAD6 cDNA was cloned from mouse ovary RNA and expressed in Escherichia coli through pET29 and pGEX vectors. When benzoyl-L-arginine ethyl ester was used as a substrate, no appreciable activity was detected with a cell homogenate under conditions where a human PAD4 cDNA caused significant activity. Both pro- teins were affinity-purified to near homogeneity. The circular dichroism spectra of PAD6 and human PAD4 were similar in the far ultraviolet region. On molecular sieving, PAD6 was eluted faster than human PAD4. The cross-linking of PAD6 with dime- thyl suberimidate clearly showed six bands on an sodium dodecyl sulfate-polyacrylamide gel. These results indicate that PAD6 can constitute a hexameric structure. The purified PAD6 still showed no enzy- matic activity. This unique structure and loss in enzymatic activity is strongly suggested to favor the formation of egg cytoplasmic sheets as the architectu- ral protein

    Integrated genetic and clinical prognostic factors for aggressive adult T-cell leukemia/lymphoma

    Get PDF
    成人T細胞白血病リンパ腫(ATL)におけるゲノム情報と臨床情報を統合したリスクモデルを確立 --ATLの個別化医療を推進--. 京都大学プレスリリース. 2023-04-10.The prognosis of aggressive adult T-cell leukemia/lymphoma (ATL) is poor, and allogeneic hematopoietic stem-cell transplantation (allo-HSCT) is a curative treatment. To identify favorable prognostic patients after intensive chemotherapy, and who therefore might not require upfront allo-HSCT, we aimed to improve risk stratification of aggressive ATL patients aged <70 years. The clinical risk factors and genetic mutations were incorporated into risk modeling for overall survival (OS). We generated the m7-ATLPI, a clinicogenetic risk model for OS, that included the ATL prognostic index (PI) (ATL-PI) risk category, and non-silent mutations in seven genes, namely TP53, IRF4, RHOA, PRKCB, CARD11, CCR7, and GATA3. In the training cohort of 99 patients, the m7-ATLPI identified a low-, intermediate-, and high-risk group with 2-year OS of 100%, 43%, and 19%, respectively (hazard ratio [HR] 5.46, p < 0.0001). The m7-ATLPI achieved superior risk stratification compared to the current ATL-PI (C-index 0.92 vs. 0.85, respectively). In the validation cohort of 84 patients, the m7-ATLPI defined low-, intermediate-, and high-risk groups with a 2-year OS of 81%, 30%, and 0%, respectively (HR 2.33, p = 0.0094), and the model again outperformed the ATL-PI (C-index 0.72 vs. 0.70, respectively). The simplified m7-ATLPI, which is easier to use in clinical practice, achieved superior risk stratification compared to the ATL-PI, as did the original m7-ATLPI; the simplified version was calculated by summing the following: high-risk ATL-PI category (+10), low-risk ATL-PI category (−4), and non-silent mutations in TP53 (+4), IRF4 (+3), RHOA (+1), PRKCB (+1), CARD11 (+0.5), CCR7 (−2), and GATA3 (−3)

    Role of FBXW7 in the quiescence of gefitinib-resistant lung cancer stem cells in EGFR-mutant non-small cell lung cancer

    Get PDF
    Several recent studies suggest that cancer stem cells (CSCs) are involved in intrinsic resistance to cancer treatment. Maintenance of quiescence is crucial for establishing resistance of CSCs to cancer therapeutics. F-box/WD repeat-containing protein 7 (FBXW7) is a ubiquitin ligase that regulates quiescence by targeting the c-MYC protein for ubiquitination. We previously reported that gefitinib-resistant persisters (GRPs) in EGFR-mutant non-small cell lung cancer (NSCLC) cells highly expressed octamer-binding transcription factor 4 (Oct-4) as well as the lung CSC marker CD133, and they exhibited distinctive features of the CSC phenotype. However, the role of FBXW7 in lung CSCs and their resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors in NSCLC is not fully understood. In this study, we developed GRPs from the two NSCLC cell lines PC9 and HCC827, which express an EGFR exon 19 deletion mutation, by treatment with a high concentration of gefitinib. The GRPs from both PC9 and HCC827 cells expressed high levels of CD133 and FBXW7, but low levels of c-MYC. Cell cycle analysis demonstrated that the majority of GRPs existed in the G0/G1 phase. Knockdown of the FBXW7 gene significantly reduced the cell number of CD133-positive GRPs and reversed the cell population in the G0/G1-phase. We also found that FBXW7 expression in CD133-positive cells was increased and c-MYC expression was decreased in gefitinib-resistant tumors of PC9 cells in mice and in 9 out of 14 tumor specimens from EGFR-mutant NSCLC patients with acquired resistance to gefitinib. These findings suggest that FBXW7 plays a pivotal role in the maintenance of quiescence in gefitinib-resistant lung CSCs in EGFR mutation-positive NSCLC

    A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

    Get PDF
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss

    Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation

    No full text
    Abstract Microbial fuel cells (MFCs) are devices that exploit living microbes for electricity generation coupled to organics degradation. MFCs are expected to be applied to energy-saving wastewater treatment (WWT) as alternatives to activated-sludge reactors (ASRs). Although extensive laboratory studies have been performed to develop technologies for WWT-MFCs, limited information is available for comparative evaluation of MFCs and ASRs in terms of organics removal and waste-sludge production. In the present study, laboratory WWT experiments were performed using cassette-electrode MFCs and ASRs that were continuously supplied either with artificial domestic wastewater (ADW) containing starch and peptone or with artificial industrial wastewater (AIW) containing methanol as the major organic matter. We found that these two types of WWT reactors achieved similar organics-removal efficiencies, namely, over 93% based on chemical oxygen demands for the ADW treatment and over 97% for the AIW treatment. Sludge was routinely removed from these reactors and quantified, showing that amounts of waste sludge produced in MFCs were approximately one-third or less compared to those in ASRs. During WWT, MFCs continuously generated electricity with Coulombic efficiencies of 20% or more. In reference to ASRs, MFCs are demonstrated to be attractive WWT facilities in terms of stable organics removal and low waste-sludge production. Along with the unnecessity of electric power for aeration and the generation of power during WWT, the results obtained in the present study suggest that MFCs enable substantial energy saving during WWT
    corecore