135 research outputs found
A Field Effect Transitor based on the Mott Transition in a Molecular Layer
Here we propose and analyze the behavior of a FET--like switching device, the
Mott transition field effect transistor, operating on a novel principle, the
Mott metal--insulator transition. The device has FET-like characteristics with
a low ``ON'' impedance and high ``OFF'' impedance. Function of the device is
feasible down to nanoscale dimensions. Implementation with a class of organic
charge transfer complexes is proposed.Comment: Revtex 11pages, Figures available upon reques
Theory of the Eigler-swith
We suggest a simple model to describe the reversible field-induced transfer
of a single Xe-atom in a scanning tunneling microscope, --- the Eigler-switch.
The inelasticly tunneling electrons give rise to fluctuating forces on and
damping of the Xe-atom resulting in an effective current dependent temperature.
The rate of transfer is controlled by the well-known Arrhenius law with this
effective temperature. The directionality of atom transfer is discussed, and
the importance of use of non-equlibrium-formalism for the electronic
environment is emphasized. The theory constitutes a formal derivation and
generalization of the so-called Desorption Induced by Multiple Electron
Transitions (DIMET) point of view.Comment: 13 pages (including 2 figures in separate LaTeX-files with
ps-\specials), REVTEX 3.
Electrically Driven Light Emission from Individual CdSe Nanowires
We report electroluminescence (EL) measurements carried out on three-terminal
devices incorporating individual n-type CdSe nanowires. Simultaneous optical
and electrical measurements reveal that EL occurs near the contact between the
nanowire and a positively biased electrode or drain. The surface potential
profile, obtained by using Kelvin probe microscopy, shows an abrupt potential
drop near the position of the EL spot, while the band profile obtained from
scanning photocurrent microscopy indicates the existence of an n-type Schottky
barrier at the interface. These observations indicate that light emission
occurs through a hole leakage or an inelastic scattering induced by the rapid
potential drop at the nanowire-electrode interface.Comment: 12 pages, 4 figure
Electron-phonon effects and transport in carbon nanotubes
We calculate the electron-phonon scattering and binding in semiconducting
carbon nanotubes, within a tight binding model. The mobility is derived using a
multi-band Boltzmann treatment. At high fields, the dominant scattering is
inter-band scattering by LO phonons corresponding to the corners K of the
graphene Brillouin zone. The drift velocity saturates at approximately half the
graphene Fermi velocity. The calculated mobility as a function of temperature,
electric field, and nanotube chirality are well reproduced by a simple
interpolation formula. Polaronic binding give a band-gap renormalization of ~70
meV, an order of magnitude larger than expected. Coherence lengths can be quite
long but are strongly energy dependent.Comment: 5 pages and 4 figure
Intersubband decay of 1-D exciton resonances in carbon nanotubes
We have studied intersubband decay of E22 excitons in semiconducting carbon
nanotubes experimentally and theoretically. Photoluminescence excitation line
widths of semiconducting nanotubes with chiral indicess (n, m) can be mapped
onto a connectivity grid with curves of constant (n-m) and (2n+m). Moreover,
the global behavior of E22 linewidths is best characterized by a strong
increase with energy irrespective of their (n-m) mod(3)= \pm 1 family
affiliation. Solution of the Bethe-Salpeter equations shows that the E22
linewidths are dominated by phonon assisted coupling to higher momentum states
of the E11 and E12 exciton bands. The calculations also suggest that the
branching ratio for decay into exciton bands vs free carrier bands,
respectively is about 10:1.Comment: 4 pages, 4 figure
Tunable few-electron double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes
Quantum dots defined in carbon nanotubes are a platform for both basic
scientific studies and research into new device applications. In particular,
they have unique properties that make them attractive for studying the coherent
properties of single electron spins. To perform such experiments it is
necessary to confine a single electron in a quantum dot with highly tunable
barriers, but disorder has until now prevented tunable nanotube-based
quantum-dot devices from reaching the single-electron regime. Here, we use
local gate voltages applied to an ultra-clean suspended nanotube to confine a
single electron in both a single quantum dot and, for the first time, in a
tunable double quantum dot. This tunability is limited by a novel type of
tunnelling that is analogous to that in the Klein paradox of relativistic
quantum mechanics.Comment: 21 pages including supplementary informatio
Extraordinary carrier multiplication gated by a picosecond electric field pulse
The study of carrier multiplication has become an essential part of many-body physics and materials science as this multiplication directly affects nonlinear transport phenomena, and has a key role in designing efficient solar cells and electroluminescent emitters and highly sensitive photon detectors. Here we show that a 1-MVcm−1 electric field of a terahertz pulse, unlike a DC bias, can generate a substantial number of electron–hole pairs, forming excitons that emit near-infrared luminescence. The bright luminescence associated with carrier multiplication suggests that carriers coherently driven by a strong electric field can efficiently gain enough kinetic energy to induce a series of impact ionizations that can increase the number of carriers by about three orders of magnitude on the picosecond time scale
Electrically driven thermal light emission from individual single-walled carbon nanotubes
Light emission from nanostructures exhibits rich quantum effects and has
broad applications. Single-walled carbon nanotubes (SWNTs) are one-dimensional
(1D) metals or semiconductors, in which large number of electronic states in a
narrow range of energies, known as van Hove singularities, can lead to strong
spectral transitions. Photoluminescence and electroluminescence involving
interband transitions and excitons have been observed in semiconducting SWNTs,
but are not expected in metallic tubes due to non-radiative relaxations. Here,
we show that in the negative differential conductance regime, a suspended
quasi-metallic SWNT (QM-SWNT) emits light due to joule-heating, displaying
strong peaks in the visible and infrared corresponding to interband
transitions. This is a result of thermal light emission in 1D, in stark
contrast with featureless blackbody-like emission observed in large bundles of
SWNTs or multi-walled nanotubes. This allows for probing of the electronic
temperature and non-equilibrium hot optical phonons in joule-heated QM-SWNTs
Architectures for Multinode Superconducting Quantum Computers
Many proposals to scale quantum technology rely on modular or distributed
designs where individual quantum processors, called nodes, are linked together
to form one large multinode quantum computer (MNQC). One scalable method to
construct an MNQC is using superconducting quantum systems with optical
interconnects. However, a limiting factor of these machines will be internode
gates, which may be two to three orders of magnitude noisier and slower than
local operations. Surmounting the limitations of internode gates will require a
range of techniques, including improvements in entanglement generation, the use
of entanglement distillation, and optimized software and compilers, and it
remains unclear how improvements to these components interact to affect overall
system performance, what performance from each is required, or even how to
quantify the performance of each. In this paper, we employ a `co-design'
inspired approach to quantify overall MNQC performance in terms of hardware
models of internode links, entanglement distillation, and local architecture.
In the case of superconducting MNQCs with microwave-to-optical links, we
uncover a tradeoff between entanglement generation and distillation that
threatens to degrade performance. We show how to navigate this tradeoff, lay
out how compilers should optimize between local and internode gates, and
discuss when noisy quantum links have an advantage over purely classical links.
Using these results, we introduce a roadmap for the realization of early MNQCs
which illustrates potential improvements to the hardware and software of MNQCs
and outlines criteria for evaluating the landscape, from progress in
entanglement generation and quantum memory to dedicated algorithms such as
distributed quantum phase estimation. While we focus on superconducting devices
with optical interconnects, our approach is general across MNQC
implementations.Comment: 23 pages, white pape
- …