18,486 research outputs found

    On-off intermittency and amplitude-phase synchronization in Keplerian shear flows

    Full text link
    We study the development of coherent structures in local simulations of the magnetorotational instability in accretion discs in regimes of on-off intermittency. In a previous paper [Chian et al., Phys. Rev. Lett. 104, 254102 (2010)], we have shown that the laminar and bursty states due to the on-off spatiotemporal intermittency in a one-dimensional model of nonlinear waves correspond, respectively, to nonattracting coherent structures with higher and lower degrees of amplitude-phase synchronization. In this paper we extend these results to a three-dimensional model of magnetized Keplerian shear flows. Keeping the kinetic Reynolds number and the magnetic Prandtl number fixed, we investigate two different intermittent regimes by varying the plasma beta parameter. The first regime is characterized by turbulent patterns interrupted by the recurrent emergence of a large-scale coherent structure known as two-channel flow, where the state of the system can be described by a single Fourier mode. The second regime is dominated by the turbulence with sporadic emergence of coherent structures with shapes that are reminiscent of a perturbed channel flow. By computing the Fourier power and phase spectral entropies in three-dimensions, we show that the large-scale coherent structures are characterized by a high degree of amplitude-phase synchronization.Comment: 17 pages, 10 figure

    A Stress/Displacement Virtual Element Method for Plane Elasticity Problems

    Full text link
    The numerical approximation of 2D elasticity problems is considered, in the framework of the small strain theory and in connection with the mixed Hellinger-Reissner variational formulation. A low-order Virtual Element Method (VEM) with a-priori symmetric stresses is proposed. Several numerical tests are provided, along with a rigorous stability and convergence analysis

    On Galois-Division Multiple Access Systems: Figures of Merit and Performance Evaluation

    Full text link
    A new approach to multiple access based on finite field transforms is investigated. These schemes, termed Galois-Division Multiple Access (GDMA), offer compact bandwidth requirements. A new digital transform, the Finite Field Hartley Transform (FFHT) requires to deal with fields of characteristic p, p \neq 2. A binary-to-p-ary (p \neq 2) mapping based on the opportunistic secondary channel is introduced. This allows the use of GDMA in conjunction with available digital systems. The performance of GDMA is also evaluated.Comment: 6 pages, 4 figures. In: XIX Simposio Brasileiro de Telecomunicacoes, 2001, Fortaleza, CE, Brazi

    Inter- and intra-layer excitons in MoS2_2/WS2_2 and MoSe2_2/WSe2_2 heterobilayers

    Get PDF
    Accurately described excitonic properties of transition metal dichalcogenide heterobilayers (HBLs) are crucial to comprehend the optical response and the charge carrier dynamics of them. Excitons in multilayer systems posses inter or intralayer character whose spectral positions depend on their binding energy and the band alignment of the constituent single-layers. In this study, we report the electronic structure and the absorption spectra of MoS2_2/WS2_2 and MoSe2_2/WSe2_2 HBLs from first-principles calculations. We explore the spectral positions, binding energies and the origins of inter and intralayer excitons and compare our results with experimental observations. The absorption spectra of the systems are obtained by solving the Bethe-Salpeter equation on top of a G0_0W0_0 calculation which corrects the independent particle eigenvalues obtained from density functional theory calculations. Our calculations reveal that the lowest energy exciton in both HBLs possesses interlayer character which is decisive regarding their possible device applications. Due to the spatially separated nature of the charge carriers, the binding energy of inter-layer excitons might be expected to be considerably smaller than that of intra-layer ones. However, according to our calculations the binding energy of lowest energy interlayer excitons is only \sim 20\% lower due to the weaker screening of the Coulomb interaction between layers of the HBLs. Therefore, it can be deduced that the spectral positions of the interlayer excitons with respect to intralayer ones are mostly determined by the band offset of the constituent single-layers. By comparing oscillator strengths and thermal occupation factors, we show that in luminescence at low temperature, the interlayer exciton peak becomes dominant, while in absorption it is almost invisible.Comment: 17 pages, 4 figure

    Spectroscopic confirmation of the planetary nebula nature of PM1-242, PM1-318 and PM1-333 and morphological analysis of the nebulae

    Full text link
    We present intermediate resolution long-slit spectra and narrow-band Halpha, [NII] and [OIII] images of PM1-242, PM318 and PM1-333, three IRAS sources classified as possible planetary nebulae. The spectra show that the three objects are true planetary nebulae and allow us to study their physical properties; the images provide a detailed view of their morphology. PM1-242 is a medium-to-high-excitation (e.g., HeII4686/Hbeta ~0.4; [NII]6584/Halpha ~0.3) planetary nebula with an elliptical shape containing [NII] enhanced point-symmetric arcs. An electron temperature [Te([SIII])] of ~10250 K and an electron density [Ne([SII])] of ~2300 cm-3 are derived for PM1-242. Abundance calculations suggest a large helium abundance (He/H ~0.29) in PM1-242. PM1-318 is a high-excitation (HeII4686/Hbeta ~1) planetary nebula with a ring-like inner shell containing two enhanced opposite regions, surrounded by a fainter round attached shell brighter in the light of [OIII]. PM1-333 is an extended planetary nebula with a high-excitation (HeII4686/Hbeta up to ~0.9) patchy circular main body containing two low-excitation knotty arcs. A low Ne([SII]) of ~450 cm-3 and Te([OIII]) of ~15000 K are derived for this nebula. Abundance calculations suggest that PM1-333 is a type I planetary nebula. The lack of a sharp shell morphology, low electron density, and high-excitation strongly suggest that PM1-333 is an evolved planetary nebula. PM1-333 also shows two low-ionization polar structures whose morphology and emission properties are reminiscent of collimated outflows. We compare PM1-333 with other evolved planetary nebulae with collimated outflows and find that outflows among evolved planetary nebulae exhibit a large variety of properties, in accordance with these observed in younger planetary nebula.Comment: Accepted in The Astronomical Journal, 23 pages, 6 figure

    Índices indicadores do risco ambiental para compostos orgânicos não-iônicos: Modelo Rachel.

    Get PDF
    Descrição dos índices do Modelo Rachel. Dados para o Modelo Rachel. Simulação numéricas e resultados.bitstream/CNPTIA/9907/1/comuntec46.pdfAcesso em: 30 maio 2008
    corecore