11,773 research outputs found

    Seed Magnetic Fields Generated by Primordial Supernova Explosions

    Full text link
    The origin of the magnetic field in galaxies is an open question in astrophysics. Several mechanisms have been proposed related, in general, with the generation of small seed fields amplified by a dynamo mechanism. In general, these mechanisms have difficulty in satisfying both the requirements of a sufficiently high strength for the magnetic field and the necessary large coherent scales. We show that the formation of dense and turbulent shells of matter, in the multiple explosion scenario of Miranda and Opher (1996, 1997) for the formation of the large-scale structures of the Universe, can naturally act as a seed for the generation of a magnetic field. During the collapse and explosion of Population III objects, a temperature gradient not parallel to a density gradient can naturally be established, producing a seed magnetic field through the Biermann battery mechanism. We show that seed magnetic fields ∼10−12−10−14G\sim 10^{-12}-10^{-14}G can be produced in this multiple explosion scenario on scales of the order of clusters of galaxies (with coherence length L∼1.8MpcL\sim 1.8Mpc) and up to ∼4.5×10−10G\sim 4.5\times 10^{-10}G on scales of galaxies (L∼100kpcL\sim 100 kpc).Comment: Accepted for publication in MNRAS, 5 pages (MN plain TeX macros v1.6 file). Also available at http://www.iagusp.usp.br/~oswaldo (click "OPTIONS" and then "ARTICLES"

    Electron-polaron--electron-polaron bound states in mass-gap graphene-like planar quantum electrodynamics: ss-wave bipolarons

    Full text link
    A Lorentz invariant version of a mass-gap graphene-like planar quantum electrodynamics, the parity-preserving U(1)×U(1)U(1)\times U(1) massive QED3_3, exhibits attractive interaction in low-energy electron-polaron--electron-polaron ss-wave scattering, favoring quasiparticles bound states, the ss-wave bipolarons.Comment: 6 pages, two figures, references adde
    • …
    corecore