158 research outputs found

    A compact, multi-pixel parametric light source

    Full text link
    The features of a compact, single pass, multi-pixel optical parametric generator are discussed. Several hundreds of independent high spatial-quality tunable ultrashort pulses were produced by pumping a bulk lithium triborate crystal with an array of tightly focussed intense beams. The array of beams was produced by shining a microlenses array with a large pump beam. Overall conversion efficiency to signal and idler up to 30% of the pump beam has been reported. Shot-to-shot energy fluctuation down to 3% was achieved for the generated radiation.Comment: 11 pages, 6 figures, submitted to "Optics Communications

    Λ{\Lambda}-enhanced grey molasses on the D2D_2 transition of Rubidium-87 atoms

    Full text link
    Laser cooling based on dark states, i.e. states decoupled from light, has proven to be effective to increase the phase-space density of cold trapped atoms. Dark-states cooling requires open atomic transitions, in contrast to the ordinary laser cooling used for example in magneto-optical traps (MOTs), which operate on closed atomic transitions. For alkali atoms, dark-states cooling is therefore commonly operated on the D1D_1 transition nS1/2nP1/2n S_{1/2}\rightarrow n P_{1/2}. We show that, for 87Rb^{87}\text{Rb}, thanks to the large hyperfine structure separations the use of this transition is not strictly necessary and that ""quasi-dark state"" cooling is efficient also on the D2D_2 line, 5S1/25P3/25 S_{1/2}\rightarrow 5 P_{3/2}. We report temperatures as low as (4.0±0.3)μ(4.0\pm 0.3)\,\muK and an increase of almost an order of magnitude in the phase space density with respect to ordinary laser sub-Doppler cooling

    Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands

    Get PDF
    In the last few years, integrated optics (IO) beam combiners have facilitated the emergence of 4-telescope interferometers such as PIONIER or GRAVITY, boosting the imaging capabilities of the VLTI. However, the spectral range beyond 2.2microns is not ideally covered by the conventional silica based IO. Here, we propose to consider new laser-written IO prototypes made of GLS glasses, a material that permits access to the mid-infrared spectral regime. Our goal is to conduct a full characterization of our mid-IR IO 2-telescope coupler in order to measure the performance levels directly relevant for long-baseline interferometry. We focus in particular on the exploitation of the L and M astronomical bands. We use a dedicated Michelson-interferometer setup to perform Fourier Transform spectroscopy on the coupler and measure its broadband interferometric performance. We also analyze the polarization properties of the coupler, the differential dispersion and phase degradation as well as the modal behavior and the total throughput. We measure broadband interferometric contrasts of 94.9% and 92.1% for unpolarized light in the L and M bands. Spectrally integrated splitting ratios are close to 50% but show chromatic dependence over the considered bandwidths. Additionally, the phase variation due to the combiner is measured and does not exceed 0.04rad and 0.07rad across the band L and M band, respectively. The total throughput of the coupler including Fresnel and injection losses from free-space is 25.4%. The laser-written IO GLS prototype combiners prove to be a reliable technological solution with promising performance for mid-infrared long-baseline interferometry. In the next steps, we will consider more advanced optical functions as well as a fiber-fed input and revise the optical design parameters in order the further enhance the total throughput and achromatic behavior
    corecore