1,521 research outputs found

    Degeneracy and ordering of the non-coplanar phase of the classical bilinear-biquadratic Heisenberg model on the triangular lattice

    Full text link
    We investigate the zero-temperature behavior of the classical Heisenberg model on the triangular lattice in which the competition between exchange interactions of different orders favors a relative angle between neighboring spins in the interval (0,2pi/3). In this situation, the ground states are noncoplanar and have an infinite discrete degeneracy. In the generic case, the set of the ground states is in one to one correspondence (up to a global rotation) with the non-crossing loop coverings of the three equivalent honeycomb sublattices into which the bonds of the triangular lattice can be partitioned. This allows one to identify the order parameter space as an infinite Cayley tree with coordination number 3. Building on the duality between a similar loop model and the ferromagnetic O(3) model on the honeycomb lattice, we argue that a typical ground state should have long-range order in terms of spin orientation. This conclusion is further supported by the comparison with the four-state antiferromagnetic Potts model [describing the case when the angle between neighboring spins is equal to arccos(-1/3)], which at zero temperature is critical and in terms of the solid-on-solid representation is located exactly at the point of roughening transition. At other values of the angle between neighboring spins an additional constraint appears, whose presence drives the system into an ordered phase (unless this angle is equal to pi/2, when another constraint is removed and the model becomes trivially exactly solvable).Comment: 10 pages, 5 figure

    Static impurities in the kagome lattice: dimer freezing and mutual repulsion

    Full text link
    We consider the effects of doping the S = 1/2 kagome lattice with static impurities. We demonstrate that impurities lower the number of low-lying singlet states, induce dimer-dimer correlations of considerable spatial extent, and do not generate free spin degrees of freedom. Most importantly, they experience a highly unconventional mutual repulsion as a direct consequence of the strong spin frustration. These properties are illustrated by exact diagonalization, and reproduced to semi-quantitative accuracy within a dimer resonating-valence-bond description which affords access to longer length scales. We calculate the local magnetization induced by doped impurities, and consider its implications for nuclear magnetic resonance measurements on known kagome systems.Comment: 9 pages, 12 figure

    Absence of single particle Bose-Einstein condensation at low densities for bosons with correlated-hopping

    Full text link
    Motivated by the physics of mobile triplets in frustrated quantum magnets, the properties of a two dimensional model of bosons with correlated-hopping are investigated. A mean-field analysis reveals the presence of a pairing phase without single particle Bose-Einstein condensation (BEC) at low densities for sufficiently strong correlated-hopping, and of an Ising quantum phase transition towards a BEC phase at larger density. The physical arguments supporting the mean-field results and their implications for bosonic and quantum spin systems are discussed.Comment: revtex, 4 pages, 5 figure

    Phase diagram of the fully frustrated transverse-field Ising model on the honeycomb lattice

    Full text link
    Motivated by the current interest in the quantum dimer model on the triangular lattice, we investigate the phase diagram of the closely related fully-frustrated transverse field Ising model on the honeycomb lattice using classical and semi-classical approximations. We show that, in addition to the fully polarized phase at large field, the classical model possesses a multitude of phases that break the translational symmetry which in the dimer language, correspond to a plaquette phase and a columnar phase separated by an infinite cascade of mixed phases. The modification of the phase diagram by quantum fluctuations has been investigated in the context of linear spin-wave theory. The extrapolation of the semiclassical energies suggests that the plaquette phase extends down to zero field for spin 1/2, in agreement with the 12Ă—12\sqrt{12}\times\sqrt{12} phase of the quantum dimer model on the triangular lattice with only kinetic energy.Comment: 15 Pages, 11 Figures, Accepted for PR

    Magnetization plateaux in an extended Shastry-Sutherland model

    Full text link
    We study an extended two-dimensional Shastry-Sutherland model in a magnetic field where besides the usual Heisenberg exchanges of the Shastry-Sutherland model two additional SU(2) invariant couplings are included. Perturbative continous unitary transformations are used to determine the leading order effects of the additional couplings on the pure hopping and on the long-range interactions between the triplons which are the most relevant terms for small magnetization. We then compare the energy of various magnetization plateaux in the classical limit and we discuss the implications for the two-dimensional quantum magnet SrCu2_2(BO3_3)2_2.Comment: 8 pages, Proceedings of the HFM2008 Conferenc

    Adaptive Guidance: Effects On Self-Regulated Learning In Technology-Based Training

    Get PDF
    Guidance provides trainees with the information necessary to make effective use of the learner control inherent in technology-based training, but also allows them to retain a sense of control over their learning (Bell & Kozlowski, 2002). One challenge, however, is determining how much learner control, or autonomy, to build into the guidance strategy. We examined the effects of alternative forms of guidance (autonomy supportive vs. controlling) on trainees’ learning and performance, and examined trainees’ cognitive ability and motivation to learn as potential moderators of these effects. Consistent with our hypotheses, trainees receiving adaptive guidance had higher levels of knowledge and performance than trainees in a learner control guidance. Controlling guidance had the most consistent positive impact on the learning outcomes, while autonomy supportive guidance demonstrated utility for more strategic outcomes. In addition, guidance was generally more effective for trainees with higher levels of cognitive ability and autonomy guidance served to enhance the positive effects of motivation to learn on the training outcomes

    Crystallization of the resonating valence bond liquid as vortex condensation

    Full text link
    We show that the liquid-to-crystal quantum phase transition in the Rokhsar--Kivelson dimer model on the two-dimensional triangular lattice occurs as a condensation of vortex-like excitations called ``visons''. This conclusion is drawn from the numerical studies of the vison spectrum in the liquid phase by using the Green's function Monte Carlo method. We find that visons remain the lowest excitation throughout the liquid phase and that their gap decreases continuously to zero at the phase transition. The nature of the crystal phase and the second order of the phase transition are in agreement with the earlier prediction of Moessner and Sondhi [Phys. Rev. B 63, 224401 (2001)].Comment: 4 pages, 4 figure

    Frustrated three-leg spin tubes: from spin 1/2 with chirality to spin 3/2

    Full text link
    Motivated by the recent discovery of the spin tube [(CuCl2_2tachH)3_3Cl]Cl2_2, we investigate the properties of a frustrated three-leg spin tube with antiferromagnetic intra-ring and inter-ring couplings. We pay special attention to the evolution of the properties from weak to strong inter-ring coupling and show on the basis of extensive density matrix renormalization group and exact diagonalization calculations that the system undergoes a first-order phase transition between a dimerized gapped phase at weak coupling that can be described by the usual spin-chirality model and a gapless critical phase at strong coupling that can be described by an effective spin-3/2 model. We also show that there is a magnetization plateau at 1/3 in the gapped phase and slightly beyond. The implications for [(CuCl2_2tachH)3_3Cl]Cl2_2 are discussed, with the conclusion that this system behaves essentially as a spin-3/2 chain.Comment: 8 pages, 9 figures, revised versio
    • …
    corecore