186 research outputs found
Towards a molecular definition of worker sterility: differential gene expression and reproductive plasticity in honey bees
We show that differences in the reproductive development of honey bee workers are associated with locus-specific changes to abundance of messenger RNA. Using a cross-fostering field experiment to control for differences related to age and environment, we compared the gene expression profiles of functionally sterile workers (wild-type) and those from a mutant strain in which workers are reproductively active (anarchist). Among the set of three genes that are significantly differentially expressed are two major royal jelly proteins that are up-regulated in wild-type heads. This discovery is consistent with sterile workers synthesizing royal jelly as food for developing brood. Likewise, the relative underexpression of these two royal jellies in anarchist workers is consistent with these workers’ characteristic avoidance of alloparental behaviour, in favour of selfish egg-laying. Overall, there is a trend for the most differentially expressed genes to be up-regulated in wild-type workers. This pattern suggests that functional sterility in honey bee workers may generally involve the expression of a suite of genes that effectively ‘switch’ ovaries off, and that selfish reproduction in honey bee workers, though rare, is the default developmental pathway that results when ovary activation is not suppressed
Drawing Phylogenetic Trees
We present linear-time algorithms for drawing phylogenetic trees in radial and circular representations. In radial drawings given edge lengths (representing evolutionary distances) are preserved, but labels (names of taxons represented in the leaves) need to be adjusted, whereas in circular drawings labels are perfectly spread out, but edge lengths adjusted. Our algorithms produce drawings that are unique solutions to reasonable criteria and assign to each subtree a wedge of its own. The linear running time is particularly interesting in the circular case, because our approach is a special case of Tutte s barycentric layout algorithm involving the solution of a system of linear equations
Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome
Carbohydrate-metabolizing enzymes may have particularly interesting roles in the honey bee, Apis mellifera, because this social insect has an extremely carbohydrate-rich diet, and nutrition plays important roles in caste determination and socially mediated behavioural plasticity. We annotated a total of 174 genes encoding carbohydrate-metabolizing enzymes and 28 genes encoding lipid-metabolizing enzymes, based on orthology to their counterparts in the fly, Drosophila melanogaster, and the mosquito, Anopheles gambiae. We found that the number of genes for carbohydrate metabolism appears to be more evolutionarily labile than for lipid metabolism. In particular, we identified striking changes in gene number or genomic organization for genes encoding glycolytic enzymes, cellulase, glucose oxidase and glucose dehydrogenases, glucose-methanol-choline (GMC) oxidoreductases, fucosyltransferases, and lysozymes
- …