8 research outputs found

    Clistobothrium sp. (Cestoda: Tetraphyllidea) in oarfish (Regalecus russelii) stranded on the coast of Akita Prefecture, Japan

    Get PDF
    Oarfish (Regalecus russelii Cuvier) are mesopelagic fish with little known about their life history. Oarfish live in deep water, making it difficult for researchers to collect specimens; thus, records of their parasitic helminths are limited. Two plerocercoids were found for the first time in an oarfish stranded on the coast of Akita Prefecture, Japan. These plerocercoids were identified as Clistobothrium sp. RR-1 using morphological and molecular analyses. It was revealed that oarfish represent one of the intermediate hosts of the genus Clistobothrium, and large sharks are the definitive hosts for these parasites

    Design and Beam Dynamics Study of Disk-Loaded Structure for Muon Linac

    No full text
    The disk-loaded structures (DLS) in the muon LINAC are under development for the J-PARC muon g-2/EDM experiment. Four DLSs with an accelerating gradient of 20 MV/m take charge of muon acceleration from 40 MeV to 212 MeV, which corresponds to 70% to 94% of the speed of light. The quasi-constant gradient type TM01-2pi/3 mode DLSs with gradually varying disk spacing was designed and confirmed that the cumulative phase slip due to the mismatch between muon and phase velocity can be suppressed to less than 2 degrees at the frequency of 2592 MHz. In addition, the optimum synchronous phase and the lattice were investigated to satisfy the requirements of the total emittance less than 1.5 pi mm mrad and the momentum spread less than 0.1% in RMS

    Fabrication and Low-Power Test of Disk-and-Washer Cavity for Muon Acceleration

    No full text
    The muon g-2/EDM experiment is under preparation at Japan Proton Accelerator Research Complex (J-PARC), and the muon linear accelerator for the experiment is being developed. A Disk-and-Washer (DAW) cavity will be used for the medium-velocity part of the accelerator, and muons will be accelerated from v/c=ß=0.3 to 0.7 with the operating frequency of 1.296 GHz. Machining, brazing, and low-power measurements of a prototype cell reflecting the design of the first tank of DAW were performed to identify fabrication problems. Several problems were identified, such as displacement of washers during brazing, and some measures will be taken in the actual tank fabrication. In this paper, the results of the prototype cell fabrication will be reported
    corecore