55 research outputs found

    Limited Effect of CpG ODN in Preventing Type 1 Diabetes in NOD Mice

    Get PDF
    Type 1 diabetes is considered as Th1 cell mediated autoimmune disease and the suppression of Th1 cells or the activation of Th2 cells has been regarded as a plausible immunologic intervention for the prevention of type 1 diabetogenesis in a rodent model. CpG ODN is an immunostimulatory sequence primarily present in bacterial DNA, viral DNA and BCG. CpG ODN is conventionally classified as a Th1 cell activator, which has been clinically applied to cancer, allergy and infectious disease. Recently, there was a promising report of that CpG ODN administration suppressed the development of type 1 diabetes in NOD mice by inducing Th2 cell mediated cytokine. However, the antidiabetogenic effect of CpG ODN on NOD mice is controversial. Thus, two studies were serially undertaken with various kinds of CpG motif to find a more optimal sequence and administration method. In the first study, CpG ODN was vaccinated four times and pancreatic inflammation and the quantity of serum insulin subsequently evaluated. In the second study, the amounts of IFN γ and IL-4 in sera were measured as representative cytokines of Th1 and Th2 cells, respectively. As a result, vaccination or continuous injection of CpG ODN failed to show a preventive effect on type 1 diabetogenesis in NOD mice. Structural differences of CpG ODN also had no affect on the result. CpG ODN also consistently showed affect on the pancreatic pathology. The productions of IFN and IL-4 were γ detected only in the K and D type CpG ODN administration groups. Comparison of the two cytokines leads to the conclusion that CpG ODN generated a Th1-weighted response in both study groups. It was assumed that CpG ODN failed to produce Th2-weighted cytokine milieu, which can overcome the genetically determined phenotype of NOD mice. Given these results, it was concluded that the immunotherapeutic application of CpG ODN on Type 1 diabetes had clear limitations

    Preoperative evaluation of pulmonary artery morphology and pulmonary circulation in neonates with pulmonary atresia - usefulness of MR angiography in clinical routine

    Get PDF
    BACKGROUND: To explore the role of contrast-enhanced magnetic resonance angiography (CE-MRA) in clinical routine for evaluating neonates with pulmonary atresia (PA) and to describe their pulmonary artery morphology and blood supply.CE-MRA studies of 15 neonates with PA (12 female; median weight: 2900 g) were retrospectively evaluated by two radiologists in consensus. Each study was judged to be either diagnostic or non-diagnostic depending on the potential to evaluate pulmonary artery morphology and pulmonary blood supply. In those cases where surgery or conventional angiocardiography was performed results were compared. RESULTS: CE-MRA was considered diagnostic in 87%. Pulmonary artery morphology was classified as "confluent with (n = 1) and without (n = 1) main pulmonary artery", "non-confluent" (n = 6) or "absent" (n = 7). Source of pulmonary blood supply was "a persistent arterial duct" (n = 12), "a direct" (n = 22) or "indirect (n = 9) aortopulmonary collateral artery (APCA)" or "an APCA from the ascending aorta" (n = 2). In no patient were there any additional findings at surgery or conventional angiocardiography which would have changed the therapeutic or surgical approach. CONCLUSIONS: CE-MRA is a useful diagnostic tool for the preoperative evaluation of the morphology of pulmonary arteries and blood supply in neonates with PA. In most cases diagnostic cardiac catheterization can be avoided

    GDF-15 is abundantly expressed in plexiform lesions in patients with pulmonary arterial hypertension and affects proliferation and apoptosis of pulmonary endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growth-differentiation factor-15 (GDF-15) is a stress-responsive, transforming growth factor-β-related cytokine, which has recently been reported to be elevated in serum of patients with idiopathic pulmonary arterial hypertension (IPAH). The aim of the study was to examine the expression and biological roles of GDF-15 in the lung of patients with pulmonary arterial hypertension (PAH).</p> <p>Methods</p> <p>GDF-15 expression in normal lungs and lung specimens of PAH patients were studied by real-time RT-PCR and immunohistochemistry. Using laser-assisted micro-dissection, GDF-15 expression was further analyzed within vascular compartments of PAH lungs. To elucidate the role of GDF-15 on endothelial cells, human pulmonary microvascular endothelial cells (HPMEC) were exposed to hypoxia and laminar shear stress. The effects of GDF-15 on the proliferation and cell death of HPMEC were studied using recombinant GDF-15 protein.</p> <p>Results</p> <p>GDF-15 expression was found to be increased in lung specimens from PAH patients, com-pared to normal lungs. GDF-15 was abundantly expressed in pulmonary vascular endothelial cells with a strong signal in the core of plexiform lesions. HPMEC responded with marked upregulation of GDF-15 to hypoxia and laminar shear stress. Apoptotic cell death of HPMEC was diminished, whereas HPMEC proliferation was either increased or decreased depending of the concentration of recombinant GDF-15 protein.</p> <p>Conclusions</p> <p>GDF-15 expression is increased in PAH lungs and appears predominantly located in vascular endothelial cells. The expression pattern as well as the observed effects on proliferation and apoptosis of pulmonary endothelial cells suggest a role of GDF-15 in the homeostasis of endothelial cells in PAH patients.</p

    Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a severe disorder of lung vasculature that causes right heart failure. Homeostatic effects of flow-activated transcription factor Krüppel-like factor 2 (KLF2) are compromised in PAH. Here we show that KLF2-induced exosomal microRNAs, miR-181a-5p and miR-324-5p act together to attenuate pulmonary vascular remodeling and that their actions are mediated by Notch4 and ETS1 and other key regulators of vascular homeostasis. Expressions of KLF2, miR-181a-5p and miR-324-5p are reduced, while levels of their target genes are elevated in pre-clinical PAH, idiopathic PAH and heritable PAH with missense p.H288Y KLF2 mutation. Therapeutic supplementation of miR-181a-5p and miR-324-5p reduces proliferative and angiogenic responses in patient-derived cells and attenuates disease progression in PAH mice. This study shows that reduced KLF2 signaling is a common feature of human PAH and highlights the potential therapeutic role of KLF2-regulated exosomal miRNAs in PAH and other diseases associated with vascular remodelling

    The therapeutic potential of regulatory T cells for the treatment of autoimmune disease

    Full text link
    IntroductionImmune tolerance remains the holy grail of therapeutic immunology in the fields of organ and tissue transplant rejection, autoimmune diseases, and allergy and asthma. We have learned that FoxP3(+)CD4(+) regulatory T cells play a vital role in both the induction and maintenance of self-tolerance.Areas coveredIn this opinion piece, we highlight regulatory T cells (Treg) cell biology and novel immune treatments to take advantage of these cells as potent therapeutics. We discuss the potential to utilize Treg and Treg-friendly therapies to replace current general immunosuppressives and induce tolerance as a path towards a drug-free existence without associated toxicities.Expert opinionFinally, we opine on the fact that biomedicine sits on the cusp of a new revolution: the use of human cells as versatile therapeutic engines. We highlight the challenges and opportunities associated with the development of a foundational cellular engineering science that provides a systematic framework for safely and predictably regulating cellular behaviors. Although Treg therapy has become a legitimate clinical treatment, development of the therapy will require a better understanding of the underlying Treg biology, manufacturing advances to promote cost effectiveness and combinations with other drugs to alter the pathogenicity/regulatory balance

    Pulmonale Hypertonie

    Full text link
    corecore