52 research outputs found

    Vortex nucleation as a case study of symmetry breaking in quantum systems

    Full text link
    Mean-field methods are a very powerful tool for investigating weakly interacting many-body systems in many branches of physics. In particular, they describe with excellent accuracy trapped Bose-Einstein condensates. A generic, but difficult question concerns the relation between the symmetry properties of the true many-body state and its mean-field approximation. Here, we address this question by considering, theoretically, vortex nucleation in a rotating Bose-Einstein condensate. A slow sweep of the rotation frequency changes the state of the system from being at rest to the one containing one vortex. Within the mean-field framework, the jump in symmetry occurs through a turbulent phase around a certain critical frequency. The exact many-body ground state at the critical frequency exhibits strong correlations and entanglement. We believe that this constitutes a paradigm example of symmetry breaking in - or change of the order parameter of - quantum many-body systems in the course of adiabatic evolution.Comment: Minor change

    The relationship between gambling event frequency, motor response inhibition, arousal, and dissociative experience

    Get PDF
    Speed of play has been identified as a key structural characteristic in gambling behaviour, where games involving higher playing speeds enhance the experience of gambling. Of interest in the present study is the consistent finding that games with higher event frequencies are preferred by problem gamblers and are associated with more negative gambling outcomes, such as difficulty quitting the game and increased monetary loss. The present study investigated the impact of gambling speed of play on executive control functioning, focusing on how increased speeds of play impact motor response inhibition, and the potential mediating role arousal and dissociative experience play in this relationship. Fifty regular non-problem gamblers took part in a repeated-measures experiment where they gambled with real money on a simulated slot machine across five speed of play conditions. Response inhibition was measured using an embedded Go/No-Go task, where participants had to withhold motor responses, rather than operating the spin button on the slot machine when a specific colour cue was present. Results indicated that response inhibition performance was significantly worse during faster speeds of play, and that the role of arousal in this relationship was independent of any motor priming affect. The implications of these findings for gambling legislation and gambling harm-minimisation approaches are discussed

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Discerning New Physics in Top-Antitop Production using Top Spin Observables at Hadron Colliders

    Get PDF
    Copious production of top-antitop quark pairs at hadron colliders has enabled various probes into the properties and interactions of top quarks. Among the various presently measured observables, the forward-backward asymmetry (FBA) in t tbar production measured at the Tevatron significantly deviates from the standard model predictions, and many models of new physics have been invented to explain the puzzle. We consider the consistency of the simplified single-resonance models containing a color octet axial-vector ("axigluon"), color triplet or sextet weak singlet scalars, weak isodoublet scalar, flavor-changing neutral Z', or charged W' vector boson with existing t tbar production measurements. Among the considered models only an axigluon can reproduce all Tevatron observables, without being in severe tension with the recent LHC results on t tbar production cross section, charge asymmetry and top-spin correlations. The LHC charge asymmetry measurements exclude the W' and Z' explanations of the Tevatron FBA anomaly. On the other hand, all scalar models predict notable deviations in several top spin observables, and the recent top spin correlation measurement using the "helicity" spin quantization axis by ATLAS already provides a significant constraint on possible explanations of the Tevatron FBA anomaly. Future precise measurements of top spin correlations and especially top polarization could differentiate between scalar t(u)-channel models, while they are less sensitive to pure axigluon contributions.Comment: 22 pages, 8 figures, published versio

    The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions

    Get PDF
    The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities

    Fluid challenges in intensive care: the FENICE study A global inception cohort study

    Get PDF
    Fluid challenges (FCs) are one of the most commonly used therapies in critically ill patients and represent the cornerstone of hemodynamic management in intensive care units. There are clear benefits and harms from fluid therapy. Limited data on the indication, type, amount and rate of an FC in critically ill patients exist in the literature. The primary aim was to evaluate how physicians conduct FCs in terms of type, volume, and rate of given fluid; the secondary aim was to evaluate variables used to trigger an FC and to compare the proportion of patients receiving further fluid administration based on the response to the FC.This was an observational study conducted in ICUs around the world. Each participating unit entered a maximum of 20 patients with one FC.2213 patients were enrolled and analyzed in the study. The median [interquartile range] amount of fluid given during an FC was 500 ml (500-1000). The median time was 24 min (40-60 min), and the median rate of FC was 1000 [500-1333] ml/h. The main indication for FC was hypotension in 1211 (59 %, CI 57-61 %). In 43 % (CI 41-45 %) of the cases no hemodynamic variable was used. Static markers of preload were used in 785 of 2213 cases (36 %, CI 34-37 %). Dynamic indices of preload responsiveness were used in 483 of 2213 cases (22 %, CI 20-24 %). No safety variable for the FC was used in 72 % (CI 70-74 %) of the cases. There was no statistically significant difference in the proportion of patients who received further fluids after the FC between those with a positive, with an uncertain or with a negatively judged response.The current practice and evaluation of FC in critically ill patients are highly variable. Prediction of fluid responsiveness is not used routinely, safety limits are rarely used, and information from previous failed FCs is not always taken into account

    Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

    Get PDF
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore