13 research outputs found

    Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Saccharomyces cerevisiae </it>is the first eukaryotic organism for which a multi-compartment genome-scale metabolic model was constructed. Since then a sequence of improved metabolic reconstructions for yeast has been introduced. These metabolic models have been extensively used to elucidate the organizational principles of yeast metabolism and drive yeast strain engineering strategies for targeted overproductions. They have also served as a starting point and a benchmark for the reconstruction of genome-scale metabolic models for other eukaryotic organisms. In spite of the successive improvements in the details of the described metabolic processes, even the recent yeast model (i.e., <it>i</it>MM904) remains significantly less predictive than the latest <it>E. coli </it>model (i.e., <it>i</it>AF1260). This is manifested by its significantly lower specificity in predicting the outcome of grow/no grow experiments in comparison to the <it>E. coli </it>model.</p> <p>Results</p> <p>In this paper we make use of the automated GrowMatch procedure for restoring consistency with single gene deletion experiments in yeast and extend the procedure to make use of synthetic lethality data using the genome-scale model <it>i</it>MM904 as a basis. We identified and vetted using literature sources 120 distinct model modifications including various regulatory constraints for minimal and YP media. The incorporation of the suggested modifications led to a substantial increase in the fraction of correctly predicted lethal knockouts (i.e., specificity) from 38.84% (87 out of 224) to 53.57% (120 out of 224) for the minimal medium and from 24.73% (45 out of 182) to 40.11% (73 out of 182) for the YP medium. Synthetic lethality predictions improved from 12.03% (16 out of 133) to 23.31% (31 out of 133) for the minimal medium and from 6.96% (8 out of 115) to 13.04% (15 out of 115) for the YP medium.</p> <p>Conclusions</p> <p>Overall, this study provides a roadmap for the computationally driven correction of multi-compartment genome-scale metabolic models and demonstrates the value of synthetic lethals as curation agents.</p

    Biological Roles of the O-Methyl Phosphoramidate Capsule Modification in Campylobacter jejuni.

    Get PDF
    Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification present on most C. jejuni isolates. Although the MeOPN structure is rare in nature it has structural similarity to some synthetic pesticides. In this study, we have demonstrated, by whole genome comparisons and high resolution magic angle spinning NMR, that MeOPN modifications are common to several Campylobacter species. Using MeOPN biosynthesis and transferase mutants generated in C. jejuni strain 81-176, we observed that loss of MeOPN from the cell surface correlated with increased invasion of Caco-2 epithelial cells and reduced resistance to killing by human serum. In C. jejuni, the observed serum mediated killing was determined to result primarily from activation of the classical complement pathway. The C. jejuni MeOPN transferase mutant showed similar levels of colonization relative to the wild-type in chickens, but showed a five-fold drop in colonization when co-infected with the wild-type in piglets. In Galleria mellonella waxmoth larvae, the MeOPN transferase mutant was able to kill the insects at wild-type levels. Furthermore, injection of the larvae with MeOPN-linked monosaccharides or CPS purified from the wild-type strain did not result in larval killing, indicating that MeOPN does not have inherent insecticidal activity

    Campylobacter capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials

    No full text
    The innate immune system plays a critical role in host defense against mucosal bacteria. Campylobacter jejuni is a major cause of human gastroenteritis that usually resolves spontaneously within several days, suggesting that innate mechanisms are important to control the infection. However, the specific means by which this occurs is not well understood. While diarrheal isolates of C. jejuni usually are susceptible to human serum, we found that a systemic strain of C. jejuni, isolated from the cerebrospinal fluid of an infant with meningitis, is relatively more resistant to human serum, the Bactericidal/Permeability-Increasing Protein (BPI), an endogenous cationic antimicrobial protein, and the cationic peptide antibiotic polymyxin B. To test the hypothesis that the surface properties of this strain contributed to its ability to withstand these innate host defenses, we constructed isogenic mutants in capsule (kpsM) and lipooligosaccharide (waaF) and complemented these mutants by insertion of the complementation construct in trans into hipO, a chromosomal locus. We found that capsule expression was essential for serum resistance, whereas lipooligosaccharide played no substantial role. In contrast, the lipooligosaccharide mutant showed increased sensitivity to polymyxin B, α-defensins, cathelicidins and BPI. These findings suggest that the polysaccharides of C. jejuni strains contribute differently to resistance against host innate immunity, whereby capsule is more important for resisting human complement and lipooligosaccharide is more important for protection against killing mediated by cationic antimicrobial peptides and proteins
    corecore