30 research outputs found

    Quantitative Changes in Hydrocarbons over Time in Fecal Pellets of Incisitermes minor May Predict Whether Colonies Are Alive or Dead

    Get PDF
    Hydrocarbon mixtures extracted from fecal pellets of drywood termites are species-specific and can be characterized to identify the termites responsible for damage, even when termites are no longer present or are unable to be recovered easily. In structures infested by drywood termites, it is common to find fecal pellets, but difficult to sample termites from the wood. When fecal pellets appear after remedial treatment of a structure, it is difficult to determine whether this indicates that termites in the structure are still alive and active or not. We examined the hydrocarbon composition of workers, alates, and soldiers of Incisitermes minor (Hagen) (family Kalotermitidae) and of fecal pellets of workers. Hydrocarbons were qualitatively similar among castes and pellets. Fecal pellets that were aged for periods of 0, 30, 90, and 365 days after collection were qualitatively similar across all time periods, however, the relative quantities of certain individual hydrocarbons changed over time, with 19 of the 73 hydrocarbon peaks relatively increasing or decreasing. When the sums of the positive and negative slopes of these 19 hydrocarbons were indexed, they produced a highly significant linear correlation (R2 = 0.89). Consequently, the quantitative differences of these hydrocarbons peaks can be used to determine the age of worker fecal pellets, and thus help determine whether the colony that produced them is alive or dead

    Laboratory Evaluation of Flurox, a Chitin Synthesis Inhibitor, on the Termite, Microcerotermes diversus

    Get PDF
    Microcerotermes diversus (Silvestri) (Isoptera: Termitidae) is the most economically destructive termite in structures in southwest Iran. One sustainable control strategy that usually helps to reduce subterranean termite damage in buildings, is the use of insect growth regualtors in a suitable bait matrix that are safe to the user and the environment. In the laboratory assays described here, the delayed toxicity of Flurox, a chitin synthesis inhibitor, to M. diversus was evaluated under force-feeding and choice trials. Flurox induced worker and nymph mortality and incomplete ecdysis in nymphs of M. diversus under no-choice and two-choice feeding tests. These adverse effects may cause disruption of the caste balance in M. diversus, leading to the collapse of the colony. These assays determined concentrations of Flurox that can be used in bait formulations

    Cuticular Compounds Bring New Insight in the Post-Glacial Recolonization of a Pyrenean Area: Deutonura deficiens Deharveng, 1979 Complex, a Case Study

    Get PDF
    Background: In most Arthropod groups, the study of systematics and evolution rely mostly on neutral characters, in this context cuticular compounds, as non-neutral characters, represent an underexplored but potentially informative type of characters at the infraspecific level as they have been routinely proven to be involved in sexual attraction. Methods and Findings: The collembolan species complex Deutonura deficiens was chosen as a model in order to test the utility of these characters for delineating four infraspecific entities of this group. Specimens were collected for three subspecies (D. d. deficiens, D. d. meridionalis, D. d. sylvatica) and two morphotypes (D. d. sylvatica morphoype A and B) of the complex; an additional species D. monticola was added. Cuticular compounds were extracted and separated by gas chromatography for each individual. Our results demonstrate that cuticular compounds succeeded in separating the different elements of this complex. Those data allowed also the reconstruction of the phylogenetic relationships among them. Conclusions: The discriminating power of cuticular compounds is directly related to their involvement in sexual attraction and mate recognition. These findings allowed a discussion on the potential involvement of intrinsic and paleoclimatic factors in the origin and the diversification of this complex in the Pyrenean zone. This character type brings the first advanc

    Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    Get PDF
    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone- density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics
    corecore