11 research outputs found

    Regulatory role of CD8(+ )T lymphocytes in bone marrow eosinophilopoiesis

    Get PDF
    BACKGROUND: There is a growing body of evidence to suggest that CD8(+ )T lymphocytes contribute to local allergen-induced eosinophilic inflammation. Since bone marrow (BM) responses are intricately involved in the induction of airway eosinophilia, we hypothesized that CD8(+ )T lymphocytes, as well as CD4(+ )T lymphocytes, may be involved in this process. METHODS: Several approaches were utilized. Firstly, mice overexpressing interleukin-5 (IL-5) in CD3(+ )T lymphocytes (NJ.1638; CD3(IL-5+ )mice) were bred with gene knockout mice lacking either CD4(+ )T lymphocytes (CD4(-/-)) or CD8(+ )T lymphocytes (CD8(-/-)) to produce CD3(IL-5+ )knockout mice deficient in CD4(+ )T lymphocytes (CD3(IL-5+)/CD4(-/-)) and CD8(+ )T lymphocytes (CD3(IL-5+)/CD8(-/-)), respectively. Secondly, CD3(+), CD4(+ )and CD8(+ )T lymphocytes from naïve CD3(IL-5+ )and C57BL/6 mice were adoptively transferred to immunodeficient SCID-bg mice to determine their effect on BM eosinophilia. Thirdly, CD3(IL-5+), CD3(IL-5+)/CD8(-/- )and CD3(IL-5+)/CD4(-/- )mice were sensitized and allergen challenged. Bone marrow and blood samples were collected in all experiments. RESULTS: The number of BM eosinophils was significantly reduced in CD3(IL-5+)/CD8(-/- )mice compared to CD3(IL-5+ )mice and CD3(IL-5+)/CD4(-/- )mice. Serum IL-5 was significantly higher in CD3(IL-5+)/CD4(-/- )mice compared to CD3(IL-5+ )mice but there was no difference in serum IL-5 between CD3(IL-5+)/CD4(-/- )and CD3(IL-5+)/CD8(-/- )mice. Adoptive transfer of CD8(+), but not CD4(+ )T lymphocytes from naïve CD3(IL-5+ )and C57BL/6 mice restored BM eosinophilia in immunodeficient SCID-bg mice. Additionally, allergen challenged CD3(IL-5+)/CD8(-/- )mice developed lower numbers of BM eosinophils compared to CD3(IL-5+ )mice and CD3(IL-5+)/CD4(-/- )mice. CONCLUSION: This study shows that CD8(+ )T lymphocytes are intricately involved in the regulation of BM eosinophilopoiesis, both in non-sensitized as well as sensitized and allergen challenged mice

    Systemic effects of oral tolerance on inflammation: mobilization of lymphocytes and bone marrow eosinopoiesis

    No full text
    Oral tolerance is a T-cell mediated phenomenon defined by inhibition of immune responsiveness to a protein previously contacted by the oral route. Oral tolerance may prevent autoimmune and allergic diseases that involve the recruitment and/or activation of different cell types including mast cells, neutrophils, eosinophils, monocytes and lymphocytes. The mechanisms by which oral tolerance avoids these immunological disorders are still controversial. Herein we used a murine model of ovalbumin (OVA)-induced peritonitis to investigate the effect of oral tolerance on allergic inflammation. Frequency of leucocyte subpopulations was evaluated by global and differential cell counts in peritoneal lavage fluid, peripheral blood, and bone marrow. Changes on lymphocyte subsets and adhesion molecules expression by these cells were analysed by flow cytometry. As compared with OVA-immune mice, intraperitoneal challenge of tolerant animals with OVA resulted in a significantly milder peritonitis, mostly affecting neutrophils and eosinophils; a concomitant reduction in total white blood cell counts was also observed, mainly because of lower neutrophil and eosinophil counts. Eosinophils, but not neutrophils, were also reduced in the bone-marrow of OVA-challenged tolerant mice. No changes occurred in total peritoneal lymphocyte counts in OVA-tolerant mice, however, there was a significant decrease in CD3(+) CD8(+) T cells and an increase in B cells (CD45R(+)) in these animals as compared to immune OVA-challenged animals. Altered expression of CD18 and CD54, respectively, in blood and peritoneal lymphocytes was also noted. These results suggest that, in addition to local specific effects, oral tolerance has systemic effects on the mobilization of leucocytes and bone-marrow eosinopoiesis

    Haemopoietic mechanisms in murine allergic upper and lower airway inflammation

    No full text
    Eosinophil recruitment to the airways, including involvement of haemopoietic eosinophil–basophil progenitors (Eo/B-CFU), is primarily regulated by interleukin-5 (IL-5) and eotaxin. In this study, we investigated the haemopoietic mechanisms in upper and lower airway eosinophilic inflammation. Ovalbumin (OVA) sensitized and challenged BALB/c mice were used to establish isolated upper (UAC), isolated lower (LAC), or combined upper and lower airway (ULAC) inflammation. Airway, blood and bone marrow responses were evaluated in each model. Numbers of airway eosinophils and CD4(+) cells were increased significantly in the nasal mucosa in UAC and ULAC mice, and in the lung tissue in LAC and ULAC groups. Levels of IL-5 and eotaxin were increased significantly in the nasal lavage fluid (NL) in UAC and ULAC mice, and in the bronchoalveolar lavage fluid (BAL) in LAC and ULAC groups. The proportion of IL-5-responsive bone marrow Eo/B-CFU was significantly higher than the control in all treatment groups, but peaked much earlier in the ULAC group. Kinetic studies revealed that IL-5 and eotaxin in NL, BAL and serum peaked between 2 and 12 hr after OVA challenge in ULAC mice, and at 24 hr in UAC mice, related to the timing of maximal progenitor responses. These data support the concept that the systemic mechanisms linking rhinitis to asthma depend on the location and extent of airway allergen exposure
    corecore