12 research outputs found

    Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons

    Get PDF
    Ligaments and tendons are soft connective tissues which serve essential roles for biomechanical function of the musculoskeletal system by stabilizing and guiding the motion of diarthrodial joints. Nevertheless, these tissues are frequently injured due to repetition and overuse as well as quick cutting motions that involve acceleration and deceleration. These injuries often upset this balance between mobility and stability of the joint which causes damage to other soft tissues manifested as pain and other morbidity, such as osteoarthritis

    Viscoelastic properties of the Achilles tendon in vivo

    Get PDF
    It has been postulated that human tendons are viscoelastic and their mechanical properties time-dependent. Although Achilles tendon (AT) mechanics are widely reported, there is no consensus about AT viscoelastic properties such as loading rate dependency or hysteresis, in vivo. AT force-elongation characteristics were determined from 14 subjects in an ankle dynamometer at different loading rates using motion capture assisted ultrasonography. AT stiffness and elongation were determined between 10 – 80% of maximum voluntary contraction (MVC) force at fast and slow loading rates. As subjects were unable to consistently match the target unloading rate in the slow condition, AT hysteresis was only calculated for the fast rate. There was a significant difference between the fast and the slow loading rates: 120 ± 6 vs. 21 ± 1% of MVC sˉ¹ (mean ± standard error), respectively. However, neither stiffness (193 ± 18 N mmˉ¹ vs. 207 ± 22 N mmˉ¹) nor elongation at any force level (13.0 ± 1.2 mm vs. 14.3 ± 0.9 mm at 80% of MVC) were significantly different between the fast and slow loading rates. Tendon hysteresis at the fast rate was 5 ± 2%. As stiffness was not sensitive to loading rate and hysteresis was small, it was concluded that elastic properties prevail over viscous properties in the human AT. The current results support the idea that AT stiffness is independent of loading rate.peerReviewe

    Consensus on the treatment of hidradenitis suppurativa - Brazilian Society of Dermatology

    No full text
    corecore