36 research outputs found

    Exploring the transcriptomic data of the Australian paralysis tick, Ixodes holocyclus

    Get PDF
    Ixodes holocyclus is the paralysis tick commonly found in Australia. I. holocyclus does not cause paralysis in the primary host – bandicoots, but markedly affects secondary hosts such as companion animals, livestock and humans. Holocyclotoxins are the neurotoxin molecules in I. holocyclus responsible for paralysis symptoms. There is a limited understanding of holocyclotoxins due to the difficulties in purifying and expressing these toxins in vitro. Next-generation sequencing technologies were utilised for the first time to generate transcriptome data from two cDNA samples –salivary glands samples collected from female adult ticks engorged on paralysed companion animals and on bandicoots. Contigencoded proteins in each library were annotated according to their best BLAST match against several databases and functionally assigned into six protein categories: housekeeping, transposable elements, pathogen-related, hypothetical, secreted and novel. The “secreted protein” category is comprised of ten protein families: enzymes, protease inhibitors, antigens, mucins, immunity-related, lipocalins, glycinerich, putative secreted, salivary and toxin-like. Comparisons of contig representation between the two libraries reveal the differential expression of tick proteins collected from different hosts. This study provides a preliminary description of the I. holocyclus tick salivary gland transcriptome

    Exploring the Transcriptomic Data of the Australian Paralysis Tick, Ixodes Holocyclus

    Get PDF
    Ixodes holocyclus is the paralysis tickcommonly found in Australia. I. holocyclus does notcause paralysis in the primary host – bandicoots, butmarkedly affects secondary hosts such as companionanimals, livestock and humans. Holocyclotoxins are theneurotoxin molecules in I. holocyclus responsible forparalysis symptoms. There is a limited understanding ofholocyclotoxins due to the difficulties in purifying andexpressing these toxins in vitro. Next-generationsequencing technologies were utilised for the first time togenerate transcriptome data from two cDNA samples –salivary glands samples collected from female adult ticksengorged on paralysed companion animals and onbandicoots. Contig-encoded proteins in each librarywere annotated according to their best BLAST matchagainst several databases and functionally assigned intosix protein categories: housekeeping, transposableelements, pathogen-related, hypothetical, secreted andnovel. The “secreted protein” category is comprised often protein families: enzymes, protease inhibitors,antigens, mucins, immunity-related, lipocalins, glycinerich,putative secreted, salivary and toxin-like.Comparisons of contig representation between the twolibraries reveal the differential expression of tickproteins collected from different hosts. This studyprovides a preliminary description of the I. holocyclustick salivary gland transcriptome

    The Complete Genome Sequence of the Pathogenic Intestinal Spirochete Brachyspira pilosicoli and Comparison with Other Brachyspira Genomes

    Get PDF
    Background: The anaerobic spirochete Brachyspira pilosicoli colonizes the large intestine of various species of birds and mammals, including humans. It causes ''intestinal spirochetosis'', a condition characterized by mild colitis, diarrhea and reduced growth. This study aimed to sequence and analyse the bacterial genome to investigate the genetic basis of its specialized ecology and virulence. Methodology/Principal Findings: The genome of B. pilosicoli 95/1000 was sequenced, assembled and compared with that of the pathogenic Brachyspira hyodysenteriae and a near-complete sequence of Brachyspira murdochii. The B. pilosicoli genome was circular, composed of 2,586,443 bp with a 27.9 mol% G+C content, and encoded 2,338 genes. The three Brachyspira species shared 1,087 genes and showed evidence of extensive genome rearrangements. Despite minor differences in predicted protein functional groups, the species had many similar features including core metabolic pathways. Genes distinguishing B. pilosicoli from B. hyodysenteriae included those for a previously undescribed bacteriophage that may be useful for genetic manipulation, for a glycine reductase complex allowing use of glycine whilst protecting from oxidative stress, and for aconitase and related enzymes in the incomplete TCA cycle, allowing glutamate synthesis and function of the cycle during oxidative stress. B. pilosicoli had substantially fewer methyl-accepting chemotaxis genes than B. hyodysenteriae and hence these species are likely to have different chemotactic responses that may help to explain their different host range and colonization sites. B. pilosicoli lacked the gene for a new putative hemolysin identified in B. hyodysenteriae WA1. Both B. pilosicoli and B. murdochii lacked the rfbBADC gene cluster found on the B. hyodysenteriae plasmid, and hence were predicted to have different lipooligosaccharide structures. Overall, B. pilosicoli 95/1000 had a variety of genes potentially contributing to virulence. Conclusions/Significance: The availability of the complete genome sequence of B. pilosicoli 95/1000 will facilitate functional genomics studies aimed at elucidating host-pathogen interactions and virulence
    corecore