19 research outputs found

    Potential of poly(styrene-co-divinylbenzene) monolithic columns for the LC-MS analysis of protein digests

    Get PDF
    Two polystyrene-based capillary monolithic columns of different length (50 and 250 mm) were used to evaluate the effects of column length on gradient separation of protein digests. A tryptic digest of a 9-protein mixture was used as a test sample. Peak capacities were determined from selected extracted ion chromatograms, and tandem mass spectrometry data were used for database matching using the MASCOT search engine. Peak capacities and protein identification scores were higher for the long column with all gradients. Peak capacities appear to approach a plateau for longer gradient times; maximum peak capacity was estimated to be 294 for the short column and 370 for the long column. Analyses with similar gradient slope produced a ratio of the peak capacities of 3.36 for the long and the short column, which is slightly higher than the expected value of the square root of the column length ratio. The use of a longer monolith improves peptide separation, as reflected by higher peak capacity, and also increases protein identification, as observed from higher identification scores and a larger number of identified peptides. Attention has also been paid to the peak production rate (PPR, peak capacity per unit time). For short analysis times, the short column produces a higher PPR, while for analysis times longer than 40 min, the PPR of the 250-mm column is higher

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    A mouse model for oral squamous cell carcinoma

    Get PDF
    Despite recent advances, the prognosis of oral squamous cell carcinoma is still poor. Therapeutic options such as radiotherapy, chemotherapy, surgery and the novel treatment option gene therapy are being investigated in animal models. Diverse models have been studied to induce oral squamous cell carcinomas. The carcinogenic 4-nitroquinoline-1-oxide (4NQO) model has proven to be successful although until now it is unknown at what time point the established tumor is a representative squamous cell carcinoma and has a suitable volume for scientific treatment. For this end we applied 4NQO 3 times a week during 16 weeks and measured the volume of tumor tissue each week until the end of the experiment at 40 weeks. Concurrent histopathology at different time points up to the end of the experiment revealed that all mice bearing oral tumors were diagnosed with squamous cell carcinoma. Immunohistochemistry with markers cyclin D1 and E-cadherin revealed that the generated mouse oral tumors showed strong similarities with the described immunopathology in human oral tumors. The 4NQO model is a suitable alternative for preclinical gene therapy experiments with primary oral tumors. Future survey of therapeutic options in the carcinogenic 4NQO model should be conducted around 40 weeks after the start of the treatment
    corecore