10 research outputs found

    Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields

    Get PDF
    The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated

    Parametric identification of mechanical material behavior:a literature survey

    Get PDF

    An inverse method for the mechanical characterisation of metals

    Get PDF

    Residual stresses in microelectronics induced by thermoset packaging materials during cure

    No full text
    This paper presents a constitutive model for predicting the stresses in thermosetting resins during cure. An overview is given of the experimental techniques used for determining the parameters in this model. The model is validated by comparing its predictions to additional measurements, which have not been used for the actual parameter estimation. This validation showed that the model is capable of giving fair predictions of the measured stresses. The model is implemented in a commercially available finite element package and its use is demonstrated by applying it to the study of a flip-chip underfilling process

    Overview of identification methods of mechanical parameters based on full-field measurements

    Get PDF
    This article reviews recently developed methods for constitutive parameter identification based on kinematic full-field measurements, namely the finite element model updating method (FEMU), the constitutive equation gap method (CEGM), the virtual fields method (VFM), the equilibrium gap method (EGM) and the reciprocity gap method (RGM). Their formulation and underlying principles are presented and discussed. These identification techniques are then applied to full-field experimental data obtained on four different experiments, namely (i) a tensile test, (ii) the Brazilian test, (iii) a shear-flexural test, and (iv) a biaxial test. Test (iv) features a non-uniform damage field, and hence non-uniform equivalent elastic properties, while tests (i), (ii) and (iii) deal with the identification of uniform anisotropic elastic properties. Tests (ii), (iii) and (iv) involve non-uniform strain fields in the region of interes
    corecore