9 research outputs found

    Occupational exposure and markers of genetic damage, systemic inflammation and lung function: a Danish cross-sectional study among air force personnel

    Get PDF
    Air force ground crew personnel are potentially exposed to fuels and lubricants, as raw materials, vapours and combustion exhaust emissions, during operation and maintenance of aircrafts. This study investigated exposure levels and biomarkers of effects for employees at a Danish air force military base. We enrolled self-reported healthy and non-smoking employees (n = 79) and grouped them by exposure based on job function, considered to be potentially exposed (aircraft engineers, crew chiefs, fuel operators and munition specialists) or as reference group with minimal occupational exposure (avionics and office workers). We measured exposure levels to polycyclic aromatic hydrocarbons (PAHs) and organophosphate esters (OPEs) by silicone bands and skin wipes (PAHs only) as well as urinary excretion of PAH metabolites (OH-PAHs). Additionally, we assessed exposure levels of ultrafine particles (UFPs) in the breathing zone for specific job functions. As biomarkers of effect, we assessed lung function, plasma levels of acute phase inflammatory markers, and genetic damage levels in peripheral blood cells. Exposure levels of total PAHs, OPEs and OH-PAHs did not differ between exposure groups or job functions, with low correlations between PAHs in different matrices. Among the measured job functions, the UFP levels were higher for the crew chiefs. The exposure level of the PAH fluorene was significantly higher for the exposed group than the reference group (15.9 +/- 23.7 ng/g per 24 h vs 5.28 +/- 7.87 ng/g per 24 h, p = 0.007), as was the OPE triphenyl phosphate (305 +/- 606 vs 19.7 +/- 33.8 ng/g per 24 h, p = 0.011). The OPE tris(1, 3-dichlor-2-propyl)phosphate had a higher mean in the exposed group (60.7 +/- 135 ng/g per 24 h) compared to the reference group (8.89 +/- 15.7 ng/g per 24 h) but did not reach significance. No evidence of effects for biomarkers of systemic inflammation, genetic damage or lung function was found. Overall, our biomonitoring study show limited evidence of occupational exposure of air force ground crew personnel to UFPs, PAHs and OPEs. Furthermore, the OH-PAHs and the assessed biomarkers of early biological effects did not differ between exposed and reference groups

    Assessment of polycyclic aromatic hydrocarbon exposure, lung function, systemic inflammation, and genotoxicity in peripheral blood mononuclear cells from firefighters before and after a work shift.

    No full text
    Firefighting is regarded as possibly carcinogenic, although there are few mechanistic studies on genotoxicity in humans. We investigated exposure to polycyclic aromatic hydrocarbons (PAH), lung function, systemic inflammation and genotoxicity in peripheral blood mononuclear cells (PBMC) of 22 professional firefighters before and after a 24-h work shift. Exposure was assessed by measurements of particulate matter (PM), PAH levels on skin, urinary 1-hydroxypyrene (1-OHP) and self-reported participation in fire extinguishing activities. PM measurements indicated that use of personal protective equipment (PPE) effectively prevented inhalation exposure, but exposure to PM occurred when the environment was perceived as safe and the self-contained breathing apparatuses were removed. The level of PAH on skin and urinary 1-OHP concentration were similar before and after the work shift, irrespective of self-reported participation in fire extinction activities. Post-shift, the subjects had reduced levels of oxidatively damaged DNA in PBMC, and increased plasma concentration of vascular cell adhesion molecule 1 (VCAM-1). The subjects reporting participation in fire extinction activities during the work shift had a slightly decreased lung function, increased plasma concentration of VCAM-1, and reduced levels of oxidatively damaged DNA in PBMC. Our results suggest that the firefighters were not exposed to PM while using PPE, but exposure occurred when PPE was not used. The work shift was not associated with increased levels of genotoxicity. Increased levels of VCAM-1 in plasma were observed. Environ. Mol. Mutagen. 59:539–548, 2018

    Association between polycyclic aromatic hydrocarbon exposure and peripheral blood mononuclear cell DNA damage in human volunteers during fire extinction exercises.

    No full text
    This study investigated a number of biomarkers, associated with systemic inflammation as well as genotoxicity, in 53 young and healthy subjects participating in a course to become firefighters, while wearing personal protective equipment (PPE). The exposure period consisted of a 3-day training course where the subjects participated in various live-fire training exercises. The subjects were instructed to extinguish fires of either wood or wood with electrical cords and mattresses. The personal exposure was measured as dermal polycyclic aromatic hydrocarbon (PAH) concentrations and urinary excretion of 1-hydroxypyrene (1-OHP). The subjects were primarily exposed to particulate matter (PM) in by-stander positions, since the self-contained breathing apparatus effectively prevented pulmonary exposure. There was increased dermal exposure to pyrene (68.1%, 95% CI: 52.5%, 83.8%) and sum of 16 polycyclic aromatic hydrocarbons (ƩPAH; 79.5%, 95% CI: 52.5%, 106.6%), and increased urinary excretion of 1-OHP (70.4%, 95% CI: 52.5%; 106.6%) after the firefighting exercise compared with the mean of two control measurements performed 2 weeks before and 2 weeks after the firefighting course, respectively. The level of Fpg-sensitive sites in peripheral blood mononuclear cells (PBMCs) was increased by 8.0% (95% CI: 0.02%, 15.9%) compared with control measurements. The level of DNA strand breaks was positively associated with dermal exposure to pyrene and ƩPAHs, and urinary excretion of 1-OHP. Fpg-sensitive sites were only associated positively with PAHs. Biomarkers of inflammation and lung function showed no consistent response. In summary, the study demonstrated that PAH exposure during firefighting activity was associated with genotoxicity in PBMCs

    Convergent antifouling activities of structurally distinct bioactive compounds synthesized within two sympatric Haliclona Demosponges

    No full text
    A wide range of sessile and sedentary marine invertebrates synthesize secondary metabolites that have potential as industrial antifoulants. These antifoulants tend to differ in structure, even between closely related species. Here, we determine if structurally divergent secondary metabolites produced within two sympatric haliclonid demosponges have similar effects on the larvae of a wide range of benthic competitors and potential fouling metazoans (ascidians, molluscs, bryozoans, polychaetes, and sponges). The sponges Haliclona sp. 628 and sp. 1031 synthesize the tetracyclic alkaloid, haliclonacyclamine A (HA), and the long chain alkyl amino alcohol, halaminol A (LA), respectively. Despite structural differences, HA and LA have identical effects on phylogenetically disparate ascidian larvae, inducing rapid larval settlement but preventing subsequent metamorphosis at precisely the same stage. HA and LA also have similar effects on sponge, polychaete, gastropod and bryozoan larvae, inhibiting both settlement and metamorphosis. Despite having identical roles in preventing fouling and colonisation, HA and LA differentially affect the physiology of cultured HeLa human cells, indicating they have different molecular targets. From these data, we infer that the secondary metabolites within marine sponges may emerge by varying evolutionary and biosynthetic trajectories that converge on specific ecological roles

    Status and Perspective of Sponge Chemosystematics

    No full text
    corecore