3 research outputs found

    Ecto-5′-Nucleotidase: A Candidate Virulence Factor in Streptococcus sanguinis Experimental Endocarditis

    Get PDF
    Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5′-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (P<0.05) to onset of platelet aggregation than the wild-type strain, without affecting platelet-bacterial adhesion in vitro (P = 0.98). In the absence of nt5e, S. sanguinis caused IE (4 d) in a rabbit model with significantly decreased mass of vegetations (P<0.01) and recovered bacterial loads (log10CFU, P = 0.01), suggesting that Nt5e contributes to the virulence of S. sanguinis in vivo. As a virulence factor, Nt5e may function by (i) hydrolyzing ATP, a pro-inflammatory molecule, and generating adenosine, an immunosuppressive molecule to inhibit phagocytic monocytes/macrophages associated with valvular vegetations. (ii) Nt5e-mediated inhibition of platelet aggregation could also delay presentation of platelet microbicidal proteins to infecting bacteria on heart valves. Both plausible Nt5e-dependent mechanisms would promote survival of infecting S. sanguinis. In conclusion, we now show for the first time that streptococcal Nt5e modulates S. sanguinis-induced platelet aggregation and may contribute to the virulence of streptococci in experimental IE

    Infection of human endothelial cells with Staphylococcus aureus induces the production of monocyte chemotactic protein-1 (MCP-1) and monocyte chemotaxis

    No full text
    Bacterial infection coincides with migration of leucocytes from the circulation into the bacterium-infected tissue. Recently, we have shown that endothelial cells, upon binding and ingestion of Staphylococcus aureus, exhibit proinflammatory properties including procoagulant activity and increased intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression on the cell surface, resulting in hyperadhesiveness, mainly for monocytes. The enhanced extravasation of monocytes to bacterium-infected sites is facilitated by the local production of chemotactic factors. From another study we concluded that the locally produced chemokine MCP-1 is important in the recruitment of monocytes to the peritoneal cavity in a model of bacterial peritonitis. In the present study we investigated whether cultured human endothelial cells after infection with bacteria produce and release MCP-1, which in turn stimulates monocyte chemotaxis. We observed that endothelial cells released significant amounts of MCP-1 within 48 h after ingestion of S. aureus. This was dependent on the number and the virulence of the bacteria used to infect the endothelial cells. The kinetics as well as the amount of MCP-1 released by S. aureus-infected endothelial cells differed markedly from that released by endothelial cells upon stimulation with IL-1β. Supernatant from S. aureus-infected or IL-1β-stimulated cells promoted monocyte chemotaxis which was almost entirely abrogated in the presence of neutralizing anti-MCP-1 antibody, indicating that most of the chemotactic activity was due to the release of MCP-1 into the supernatant. Our findings support the notion that endothelial cells can actively initiate and sustain an inflammatory response after an encounter with pathogenic microorganisms, without the intervention of macrophage-derived proinflammatory cytokines
    corecore