7 research outputs found

    Registration accuracy for MR images of the prostate using a subvolume based registration protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, there has been a considerable research effort concerning the integration of magnetic resonance imaging (MRI) into the external radiotherapy workflow motivated by the superior soft tissue contrast as compared to computed tomography. Image registration is a necessary step in many applications, e.g. in patient positioning and therapy response assessment with repeated imaging. In this study, we investigate the dependence between the registration accuracy and the size of the registration volume for a subvolume based rigid registration protocol for MR images of the prostate.</p> <p>Methods</p> <p>Ten patients were imaged four times each over the course of radiotherapy treatment using a T2 weighted sequence. The images were registered to each other using a mean square distance metric and a step gradient optimizer for registration volumes of different sizes. The precision of the registrations was evaluated using the center of mass distance between the manually defined prostates in the registered images. The optimal size of the registration volume was determined by minimizing the standard deviation of these distances.</p> <p>Results</p> <p>We found that prostate position was most uncertain in the anterior-posterior (AP) direction using traditional full volume registration. The improvement in standard deviation of the mean center of mass distance between the prostate volumes using a registration volume optimized to the prostate was 3.9 mm (p < 0.001) in the AP direction. The optimum registration volume size was 0 mm margin added to the prostate gland as outlined in the first image series.</p> <p>Conclusions</p> <p>Repeated MR imaging of the prostate for therapy set-up or therapy assessment will both require high precision tissue registration. With a subvolume based registration the prostate registration uncertainty can be reduced down to the order of 1 mm (1 SD) compared to several millimeters for registration based on the whole pelvis.</p

    Distinct effects of rectum delineation methods in 3D-confromal vs. IMRT treatment planning of prostate cancer

    Get PDF
    BACKGROUND: The dose distribution to the rectum, delineated as solid organ, rectal wall and rectal surface, in 3D conformal (3D-CRT) and intensity-modulated radiotherapy treatment (IMRT) planning for localized prostate cancer was evaluated. MATERIALS AND METHODS: In a retrospective planning study 3-field, 4-field and IMRT treatment plans were analyzed for ten patients with localized prostate cancer. The dose to the rectum was evaluated based on dose-volume histograms of 1) the entire rectal volume (DVH) 2) manually delineated rectal wall (DWH) 3) rectal wall with 3 mm wall thickness (DWH(3)) 4) and the rectal surface (DSH). The influence of the rectal filling and of the seminal vesicles' anatomy on these dose parameters was investigated. A literature review of the dose-volume relationship for late rectal toxicity was conducted. RESULTS: In 3D-CRT (3-field and 4-field) the dose parameters differed most in the mid-dose region: the DWH showed significantly lower doses to the rectum (8.7% ± 4.2%) compared to the DWH(3 )and the DSH. In IMRT the differences between dose parameters were larger in comparison with 3D-CRT. Differences were statistically significant between DVH and all other dose parameters and between DWH and DSH. Mean doses were increased by 23.6% ± 8.7% in the DSH compared to the DVH in the mid-dose region. Furthermore, both the rectal filling and the anatomy of the seminal vesicles influenced the relationship between the dose parameters: a significant correlation of the difference between DVH and DWH and the rectal volume was seen in IMRT treatment. DISCUSSION: The method of delineating the rectum significantly influenced the dose representation in the dose-volume histogram. This effect was pronounced in IMRT treatment planning compared to 3D-CRT. For integration of dose-volume parameters from the literature into clinical practice these results have to be considered
    corecore