50 research outputs found

    Longitudinal evaluation of quality of life in 288 patients with Neurofibromatosis 2

    Get PDF
    Advances in molecular biology have resulted in novel therapy for neurofibromatosis 2-related (NF2) tumours, highlighting the need for robust outcome measures. The disease-focused NF2 impact on quality of life (NFTI-QOL) patient questionnaire was assessed as an outcome measure for treatment in a multi-centre study. NFTI-QOL was related to clinician-rated severity (ClinSev) and genetic severity (GenSev) over repeated visits. Data were evaluated for 288 NF2 patients (n = 464 visits) attending the English national NF2 clinics from 2010 to 2012. The male-to-female ratio was equal and the mean age was 42.2 (SD 17.8) years. The analysis included NFTI-QOL eight-item score, ClinSev graded as mild, moderate, or severe, and GenSev as a rank order of the number of NF2 mutations (graded as mild, moderate, severe). The mean (SD) 8.7 (5.4) score for NFTI-QOL for either a first visit or all visits 9.2 (5.4) was similar to the published norm of 9.4 (5.5), with no significant relationships with age or gender. NFTI-QOL internal reliability was good, with a Cronbach’s alpha score of 0.85 and test re-test reliability r = 0.84. NFTI related to ClinSev (r = 0.41, p < 0.001; r = 0.46 for all visits), but weakly to GenSev (r = 0.16, p < 0.05; r = 0.15 for all visits). ClinSev related to GenSev (r = 0.41, p < 0.001; r = 0.42 for all visits). NFTI-QOL showed a good reliability and ability to detect significant longitudinal changes in the QOL of individuals. The moderate relationships of NFTI-QOL with clinician- and genetic-rated severity suggest that NFTI-QOL taps into NF2 patient experiences that are not encompassed by ClinSev rating or genotype

    Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pierre-Robin sequence (PRS) is defined by micro- and/or retrognathia, glossoptosis and cleft soft palate, either caused by deformational defect or part of a malformation syndrome. Neurofibromatosis type 2 (NF2) is an autosomal dominant syndrome caused by mutations in the <it>NF2 </it>gene on chromosome 22q12.2. NF2 is characterized by bilateral vestibular schwannomas, spinal cord schwannomas, meningiomas and ependymomas, and juvenile cataracts. To date, NF2 and PRS have not been described together in the same patient.</p> <p>Case presentation</p> <p>We report a female with PRS (micrognathia, cleft palate), microcephaly, ocular hypertelorism, mental retardation and bilateral hearing loss, who at age 15 was also diagnosed with severe NF2 (bilateral cerebellopontine schwannomas and multiple extramedullary/intradural spine tumors). This is the first published report of an individual with both diagnosed PRS and NF2. High resolution karyotype revealed 46, XX, del(22)(q12.1q12.3), FISH confirmed a deletion encompassing <it>NF2</it>, and chromosomal microarray identified a 3,693 kb deletion encompassing multiple genes including <it>NF2 </it>and <it>MN1 </it>(meningioma 1).</p> <p>Five additional patients with craniofacial dysmorphism and deletion in chromosome 22-adjacent-to or containing <it>NF2 </it>were identified in PubMed and the DECIPHER clinical chromosomal database. Their shared chromosomal deletion encompassed <it>MN1</it>, <it>PITPNB </it>and <it>TTC28</it>. <it>MN1</it>, initially cloned from a patient with meningioma, is an oncogene in murine hematopoiesis and participates as a fusion gene (<it>TEL</it>/<it>MN1</it>) in human myeloid leukemias. Interestingly, <it>Mn1</it>-haploinsufficient mice have abnormal skull development and secondary cleft palate. Additionally, <it>Mn1 </it>regulates maturation and function of calvarial osteoblasts and is an upstream regulator of <it>Tbx22</it>, a gene associated with murine and human cleft palate. This suggests that deletion of <it>MN1 </it>in the six patients we describe may be causally linked to their cleft palates and/or craniofacial abnormalities.</p> <p>Conclusions</p> <p>Thus, our report describes a <it>NF2</it>-adjacent chromosome 22q12.2 deletion syndrome and is the first to report association of <it>MN1 </it>deletion with abnormal craniofacial development and/or cleft palate in humans.</p

    Genomic profiling distinguishes familial multiple and sporadic multiple meningiomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meningiomas may occur either as familial tumors in two distinct disorders, familial multiple meningioma and neurofibromatosis 2 (NF2), or sporadically, as either single or multiple tumors in individuals with no family history. Meningiomas in NF2 and approximately 60% of sporadic meningiomas involve inactivation of the <it>NF2 </it>locus, encoding the tumor suppressor merlin on chromosome 22q. This study was undertaken to establish whether genomic profiling could distinguish familial multiple meningiomas from sporadic solitary and sporadic multiple meningiomas.</p> <p>Methods</p> <p>We compared 73 meningiomas presenting as sporadic solitary (64), sporadic multiple (5) and familial multiple (4) tumors using genomic profiling by array comparative genomic hybridization (array CGH).</p> <p>Results</p> <p>Sporadic solitary meningiomas revealed genomic rearrangements consistent with at least two mechanisms of tumor initiation, as unsupervised cluster analysis readily distinguished tumors with chromosome 22 deletion (associated with loss of the <it>NF2 </it>tumor suppressor) from those without chromosome 22 deletion. Whereas sporadic meningiomas without chromosome 22 loss exhibited fewer chromosomal imbalance events overall, tumors with chromosome 22 deletion further clustered into two major groups that largely, though not perfectly, matched with their benign (WHO Grade I) or advanced (WHO Grades II and III) histological grade, with the latter exhibiting a significantly greater degree of genomic imbalance (P < 0.001). Sporadic multiple meningiomas showed a frequency of genomic imbalance events comparable to the atypical grade solitary tumors. By contrast, familial multiple meningiomas displayed no imbalances, supporting a distinct mechanism for the origin for these tumors.</p> <p>Conclusion</p> <p>Genomic profiling can provide an unbiased adjunct to traditional meningioma classification and provides a basis for exploring the different genetic underpinnings of tumor initiation and progression. Most importantly, the striking difference observed between sporadic and familial multiple meningiomas indicates that genomic profiling can provide valuable information for differential diagnosis of subjects with multiple meningiomas and for considering the risk for tumor occurrence in their family members.</p

    Lack of NF1 expression in a sporadic schwannoma from a patient without neurofibromatosis

    Full text link
    The neurofibromatosis type 1 (NF1) gene encodes a tumor suppressor protein, neurofibromin, which is expressed at high levels in Schwann cells and other adult tissues. Loss of NF1 expression has been reported in Schwann cell tumors (neurofibrosarcomas) from patients with NF1 and its loss is associated with increased proliferation of these cells. In this report, we describe downregulation of NF1 expression in a single spinal schwannoma from an individual without clinical features of neurofibromatosis type 1 or 2. Barely detectable expression of NF1 RNA was found in this tumor by in situ hybridization using an NF1 -specific riboprobe as well as by Northern blot and reverse-transcribed (RT)-PCR analysis. In Schwann cells cultured from this schwannoma, abundant expression of NF1 RNA could be detected by Northern blot and RT-PCR analysis. These results suggest that, in some tumors, expression of NF1 may be downregulated by factors produced within the tumor and may represent a novel mechanism for inactivating these growth suppressing genes and allowing for increased cell proliferation in tumors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45383/1/11060_2005_Article_BF01057754.pd

    Non-invasive vagus nerve stimulation for the treatment of cluster headache: a case series

    No full text
    corecore