202 research outputs found

    Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells

    Get PDF
    Breast and ovarian cancer are two of the leading causes of cancer deaths among women in the United States. Overexpression of the HER2/neu oncoprotein has been reported in patients affected with breast and ovarian cancers, and is associated with poor prognosis. To develop a novel targeted therapy for HER2/neu expressing tumors, we have constructed a fully human IgE with the variable regions of the scFv C6MH3-B1 specific for HER2/neu. This antibody was expressed in murine myeloma cells and was properly assembled and secreted. The Fc region of this antibody triggers in vitro degranulation of rat basophilic cells expressing human FcεRI (RBL SX-38) in the presence of murine mammary carcinoma cells that express human HER2/neu (D2F2/E2), but not the shed (soluble) antigen (ECDHER2) alone. This IgE is also capable of inducing passive cutaneous anaphylaxis in a human FcεRIα transgenic mouse model, in the presence of a cross-linking antibody, but not in the presence of soluble ECDHER2. Additionally, IgE enhances antigen presentation in human dendritic cells and facilitates cross-priming, suggesting that the antibody is able to stimulate a secondary T-cell anti-tumor response. Furthermore, we show that this IgE significantly prolongs survival of human FcεRIα transgenic mice bearing D2F2/E2 tumors. We also report that the anti-HER2/neu IgE is well tolerated in a preliminary study conducted in Macaca fascicularis (cynomolgus) monkeys. In summary, our results suggest that this IgE should be further explored as a potential therapeutic against HER2/neu overexpressing tumors, such as breast and ovarian cancers.Fil: Daniels, Tracy R.. University of California at Los Angeles; Estados UnidosFil: Leuchter, Richard K.. University of California at Los Angeles; Estados UnidosFil: Quintero, Rafaela. University of California; Estados UnidosFil: Helguera, Gustavo Fernando. University of California at Los Angeles; Estados Unidos. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodríguez, José A.. University of California at Los Angeles; Estados UnidosFil: Martínez Maza, Otoniel. University of California at Los Angeles; Estados UnidosFil: Schultes, Birgit C.. Advanced Immune Therapeutics, Inc.; Estados Unidos. Momenta Pharmaceuticals, Inc.; Estados UnidosFil: Nicodemus, Christopher F.. Advanced Immune Therapeutics, Inc.; Estados UnidosFil: Penichet, Manuel L.. University of California at Los Angeles; Estados Unido

    BOD1 Is Required for Cognitive Function in Humans and <i>Drosophila</i>

    Get PDF
    Here we report a stop-mutation in the BOD1 (Biorientation Defective 1) gene, which co-segregates with intellectual disability in a large consanguineous family, where individuals that are homozygous for the mutation have no detectable BOD1 mRNA or protein. The BOD1 protein is required for proper chromosome segregation, regulating phosphorylation of PLK1 substrates by modulating Protein Phosphatase 2A (PP2A) activity during mitosis. We report that fibroblast cell lines derived from homozygous BOD1 mutation carriers show aberrant localisation of the cell cycle kinase PLK1 and its phosphatase PP2A at mitotic kinetochores. However, in contrast to the mitotic arrest observed in BOD1-siRNA treated HeLa cells, patient-derived cells progressed through mitosis with no apparent segregation defects but at an accelerated rate compared to controls. The relatively normal cell cycle progression observed in cultured cells is in line with the absence of gross structural brain abnormalities in the affected individuals. Moreover, we found that in normal adult brain tissues BOD1 expression is maintained at considerable levels, in contrast to PLK1 expression, and provide evidence for synaptic localization of Bod1 in murine neurons. These observations suggest that BOD1 plays a cell cycle-independent role in the nervous system. To address this possibility, we established two Drosophila models, where neuron-specific knockdown of BOD1 caused pronounced learning deficits and significant abnormalities in synapse morphology. Together our results reveal novel postmitotic functions of BOD1 as well as pathogenic mechanisms that strongly support a causative role of BOD1 deficiency in the aetiology of intellectual disability. Moreover, by demonstrating its requirement for cognitive function in humans and Drosophila we provide evidence for a conserved role of BOD1 in the development and maintenance of cognitive features

    A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy

    Get PDF
    Prostate cancer (PCa) is the second leading cause of cancer deaths in men in the United States. The prostate-specific antigen (PSA), often found at high levels in the serum of PCa patients, has been used as a marker for PCa detection and as a target of immunotherapy. The murine IgG1 monoclonal antibody AR47.47, specific for human PSA, has been shown to enhance antigen presentation by human dendritic cells and induce both CD4 andCD8 T-cell activation when complexed with PSA. In this study, we explored the properties of a novel mouse/human chimeric anti-PSA IgE containing the variable regions of AR47.47 as a potential therapy for PCa. Our goal was to take advantage of the unique properties of IgE in order to trigger immune activation against PCa.Fil: Daniels-Wells, Tracy R. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Helguera, Gustavo Fernando. Universidad de Buenos Aires. Facultad de Farmacia y Bioquimica. Departamento de Tecnologia Farmaceutica; Argentina; University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Leuchter, Richard K. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Quintero, Rafael. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Kozman, Maggie. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Rodríguez, José A.. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; University of California. The Molecular Biology Institute; Estados Unidos de América;Fil: Ortiz-Sánchez, E. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; Biomedical Research in Cancer. Basic Research Division. National Institute of Cancerology; Mexico.;Fil: Martínez-Maza, Otonel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Schultes, Brigit C.. Advanced Immune Therapeutics; Estados Unidos de América;Fil: Nicodemus Christopher. Advanced Immune Therapeutics; Estados Unidos de América;Fil: Penichet, Manuel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; University of California. The Molecular Biology Institute; Estados Unidos de América

    Genomic, Proteomic and Physiological Characterization of a T5-like Bacteriophage for Control of Shiga Toxin-Producing Escherichia coli O157:H7

    Get PDF
    Despite multiple control measures, Escherichia coli O157:H7 (STEC O157:H7) continues to be responsible for many food borne outbreaks in North America and elsewhere. Bacteriophage therapy may prove useful for controlling this pathogen in the host, their environment and food. Bacteriophage vB_EcoS_AKFV33 (AKFV33), a T5-like phage of Siphoviridae lysed common phage types of STEC O157:H7 and not non-O157 E. coli. Moreover, STEC O157:H7 isolated from the same feedlot pen from which the phage was obtained, were highly susceptible to AKFV33. Adsorption rate constant and burst size were estimated to be 9.31×10−9 ml/min and 350 PFU/infected cell, respectively. The genome of AKVF33 was 108,853 bp (38.95% G+C), containing 160 open reading frames (ORFs), 22 tRNA genes and 32 strong promoters recognized by host RNA polymerase. Of 12 ORFs without homologues to T5-like phages, 7 predicted novel proteins while others exhibited low identity (<60%) to proteins in the National Centre for Biotechnology Information database. AKVF33 also lacked the L-shaped tail fiber protein typical of T5, but was predicted to have tail fibers comprised of 2 novel proteins with low identity (37–41%) to tail fibers of E. coli phage phiEco32 of Podoviridae, a putative side tail fiber protein of a prophage from E. coli IAI39 and a conserved domain protein of E. coli MS196-1. The receptor-binding tail protein (pb5) shared an overall identify of 29–72% to that of other T5-like phages, with no region coding for more than 6 amino acids in common. Proteomic analysis identified 4 structural proteins corresponding to the capsid, major tail, tail fiber and pore-forming tail tip (pb2). The genome of AKFV33 lacked regions coding for known virulence factors, integration-related proteins or antibiotic resistance determinants. Phage AKFV33 is a unique, highly lytic STEC O157:H7-specific T5-like phage that may have considerable potential as a pre- and post-harvest biocontrol agent

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Mortgage-Backed Securities (MBS): Is It a Curse or a Blessing for the Australian Home Loan Market? A Natural Experiment

    Full text link
    The Australian home loan market has seen a significant and persistent boom over more than two decades. Theextant literature exploring the underlying factors explaining this boom has predominantly looked at thedemand side rather than the supply side. In this paper, we look at a major supply-side issue, the introductionof mortgage-backed securities and its likely impact on the home loan market. In doing so, we have developeda mathematical model that theorises this likely relationship. Our mathematical model predicts possibleexistence of an unstable equilibrium in the home loan market in the presence of mortgage-backed securities.We have subsequently backed up our theoretical exercise with sound empirical evidence acquired andanalysed as a natural experiment in the Australian scenario using quarterly market data on home loans andmortgage-backed securities data for a 36-year period from 1976 to 2012. Using unknown structural breaktests, we have identified significant breaks around late 1992 to mid-1995, clearly indicating that there weresignificant changes in the housing market due to the introduction of mortgage-backed securities in early1993. We have also performed a stability test confirming that under certain conditions this market canbecome unstable
    corecore