137 research outputs found
In situ revelation of a zinc-blende InN wetting layer during Stranski-Krastanov growth on GaN(0001) by molecular-beam epitaxy
Indium nitride (InN) exists in two different structural phases, the equilibrium wurtzite (w) and the metastable zinc-blende (zb) phases. It is of scientific interest and practical relevance to examine the crystal structure of the epifilms during growth. In this paper, we use Patterson function inversion of low-energy electron diffraction I-V curves to reveal the preferential formation of zinc-blende InN wetting layer during the Stranski-Krastanov growth on GaN(0001). For three-dimensional islands nucleated afterwards on top of the wetting layer and for thick InN films, the equilibrium wurtzite structure is observed instead. This in situ revelation of the InN lattice structure is confirmed by ex situ transmission electron microscopy studies. Finally, the formation of zb-InN layer on w-GaN is explained in terms of the strain in the system. © 2005 The American Physical Society.published_or_final_versio
Holography at an Extremal De Sitter Horizon
Rotating maximal black holes in four-dimensional de Sitter space, for which
the outer event horizon coincides with the cosmological horizon, have an
infinite near-horizon region described by the rotating Nariai metric. We show
that the asymptotic symmetry group at the spacelike future boundary of the
near-horizon region contains a Virasoro algebra with a real, positive central
charge. This is evidence that quantum gravity in a rotating Nariai background
is dual to a two-dimensional Euclidean conformal field theory. These results
are related to the Kerr/CFT correspondence for extremal black holes, but have
two key differences: one of the black hole event horizons has been traded for
the cosmological horizon, and the near-horizon geometry is a fiber over dS_2
rather than AdS_2.Comment: 15 page
Isolation and fine mapping of Rps6: An intermediate host resistance gene in barley to wheat stripe rust
A plant may be considered a nonhost of a pathogen if all known genotypes of a plant species are resistant to all known isolates of a pathogen species. However, if a small number of genotypes are susceptible to some known isolates of a pathogen species this plant maybe considered an intermediate host. Barley (Hordeum vulgare) is an intermediate host for Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. We wanted to understand the genetic architecture underlying resistance to Pst and to determine whether any overlap exists with resistance to the host pathogen, Puccinia striiformis f. sp. hordei (Psh). We mapped Pst resistance to chromosome 7H and show that host and intermediate host resistance is genetically uncoupled. Therefore, we designate this resistance locus Rps6. We used phenotypic and genotypic selection on F2:3 families to isolate Rps6 and fine mapped the locus to a 0.1 cM region. Anchoring of the Rps6 locus to the barley physical map placed the region on two adjacent fingerprinted contigs. Efforts are now underway to sequence the minimal tiling path and to delimit the physical region harbouring Rps6. This will facilitate additional marker development and permit identification of candidate genes in the region
hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a.
Human telomerase reverse transcriptase (hTERT) plays a key role in tumor invasion and metastasis, but the mechanism of its involvement in these processes is not clear. The purpose of this study is to investigate the possible molecular mechanism of hTERT in the promotion of gastric cancer (GC) metastasis. We found that the up-regulation of hTERT in gastric cancer cells could inhibit the expression of miR-29a and enhance the expression of Integrin β1 (ITGB1). In addition, the invasive capacity of gastric cancer cells was also highly increased after hTERT overexpression. Our study also found that the restoration of miR-29a suppressed the expression of ITGB1 and inhibited GC cell metastasis both in vitro and in vivo. Taken together, our results suggested that hTERT may promote GC metastasis through the hTERT-miR-29a-ITGB1 regulatory pathway
Methanocella conradii sp. nov., a Thermophilic, Obligate Hydrogenotrophic Methanogen, Isolated from Chinese Rice Field Soil
BACKGROUND: Methanocellales contributes significantly to anthropogenic methane emissions that cause global warming, but few pure cultures for Methanocellales are available to permit subsequent laboratory studies (physiology, biochemistry, etc.). METHODOLOGY/PRINCIPAL FINDINGS: By combining anaerobic culture and molecular techniques, a novel thermophilic methanogen, strain HZ254(T) was isolated from a Chinese rice field soil located in Hangzhou, China. The phylogenetic analyses of both the 16S rRNA gene and mcrA gene (encoding the α subunit of methyl-coenzyme M reductase) confirmed its affiliation with Methanocellales, and Methanocella paludicola SANAE(T) was the most closely related species. Cells were non-motile rods, albeit with a flagellum, 1.4-2.8 µm long and by 0.2-0.3 µm in width. They grew at 37-60 °C (optimally at 55 °C) and salinity of 0-5 g NaCl l(-1) (optimally at 0-1 g NaCl l(-1)). The pH range for growth was 6.4-7.2 (optimum 6.8). Under the optimum growth condition, the doubling time was 6.5-7.8 h, which is the shortest ever observed in Methanocellales. Strain HZ254(T) utilized H(2)/CO(2) but not formate for growth and methane production. The DNA G+C content of this organism was 52.7 mol%. The sequence identities of 16S rRNA gene and mcrA gene between strain HZ254(T) and SANAE(T) were 95.0 and 87.5% respectively, and the genome based Average Nucleotide Identity value between them was 74.8%. These two strains differed in phenotypic features with regard to substrate utilization, possession of a flagellum, doubling time (under optimal conditions), NaCl and temperature ranges. Taking account of the phenotypic and phylogenetic characteristics, we propose strain HZ254(T) as a representative of a novel species, Methanocella conradii sp. nov. The type strain is HZ254(T) ( = CGMCC 1.5162(T) = JCM 17849(T) = DSM 24694(T)). CONCLUSIONS/SIGNIFICANCE: Strain HZ254(T) could potentially serve as an excellent laboratory model for studying Methanocellales due to its fast growth and consistent cultivability
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Mechanism of Disruption of the Amt-GlnK Complex by PII-Mediated Sensing of 2-Oxoglutarate
GlnK proteins regulate the active uptake of ammonium by Amt transport proteins by inserting their regulatory T-loops into the transport channels of the Amt trimer and physically blocking substrate passage. They sense the cellular nitrogen status through 2-oxoglutarate, and the energy level of the cell by binding both ATP and ADP with different affinities. The hyperthermophilic euryarchaeon Archaeoglobus fulgidus possesses three Amt proteins, each encoded in an operon with a GlnK ortholog. One of these proteins, GlnK2 was recently found to be incapable of binding 2-OG, and in order to understand the implications of this finding we conducted a detailed structural and functional analysis of a second GlnK protein from A. fulgidus, GlnK3. Contrary to Af-GlnK2 this protein was able to bind both ATP/2-OG and ADP to yield inactive and functional states, respectively. Due to the thermostable nature of the protein we could observe the exact positioning of the notoriously flexible T-loops and explain the binding behavior of GlnK proteins to their interaction partner, the Amt proteins. A thermodynamic analysis of these binding events using microcalorimetry evaluated by microstate modeling revealed significant differences in binding cooperativity compared to other characterized PII proteins, underlining the diversity and adaptability of this class of regulatory signaling proteins
- …