2,204 research outputs found
ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae.
A K+ channel gene has been cloned from Drosophila melanogaster by complementation in Saccharomyces cerevisiae cells defective for K+ uptake. Naturally expressed in the neuromuscular tissues of adult flies, this gene confers K+ transport capacity on yeast cells when heterologously expressed. In Xenopus laevis oocytes, expression yields an ungated K(+)-selective current whose attributes resemble the "leak" conductance thought to mediate the resting potential of vertebrate myelinated neurons but whose molecular nature has long remained elusive. The predicted protein has two pore (P) domains and four membrane-spanning helices and is a member of a newly recognized K+ channel family. Expression of the channel in flies and yeast cells makes feasible studies of structure and in vivo function using genetic approaches that are not possible in higher animals
Recommended from our members
Sequence and function of the two P domain potassium channels: implications of an emerging superfamily.
A new superfamily of K+ channels has emerged in the past 2 years. Notable for possessing two pore-forming P domains in each subunit, members of the superfamily have been recognized through phylogeny from micro-organisms to humans. Four subfamilies of two P domain channels have been isolated thus far; among these are the first cloned examples of outward rectifier and open rectifier (or leak) K+ channels. The two P domain K+ channels offer a new perspective from which to glimpse the molecular basis for function and dysfunction of K+-selective ion channels
Recommended from our members
Erratum: ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae (Proceedings of the National Academy of Sciences of the USA (1996) 93:23 (13256-13261))
Recommended from our members
Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3.
Potassium leak conductances were recently revealed to exist as independent molecular entities. Here, the genomic structure, cardiac localization, and biophysical properties of a murine example are considered. Kcnk3 subunits have two pore-forming P domains and unique functional attributes. At steady state, Kcnk3 channels behave like open, potassium-selective, transmembrane holes that are inhibited by physiological levels of proton. With voltage steps, Kcnk3 channels open and close in two phases, one appears to be immediate and one is time-dependent (tau = approximately 5 ms). Both proton block and gating are potassium-sensitive; this produces an anomalous increase in outward flux as external potassium levels rise because of decreased proton block. Single Kcnk3 channels open across the physiological voltage range; hence they are "leak" conductances; however, they open only briefly and rarely even after exposure to agents that activate other potassium channels
Recommended from our members
MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis.
The subthreshold, voltage-gated potassium channel of skeletal muscle is shown to contain MinK-related peptide 2 (MiRP2) and the pore-forming subunit Kv3.4. MiRP2-Kv3.4 channels differ from Kv3.4 channels in unitary conductance, voltage-dependent activation, recovery from inactivation, steady-state open probability, and block by a peptide toxin. Thus, MiRP2-Kv3.4 channels set resting membrane potential (RMP) and do not produce afterhyperpolarization or cumulative inactivation to limit action potential frequency. A missense mutation is identified in the gene for MiRP2 (KCNE3) in two families with periodic paralysis and found to segregate with the disease. Mutant MiRP2-Kv3.4 complexes exhibit reduced current density and diminished capacity to set RMP. Thus, MiRP2 operates with a classical potassium channel subunit to govern skeletal muscle function and pathophysiology
Hypervelocity dust particle impacts observed by the Giotto Magnetometer and Plasma Experiments
We report thirteen very short events in the magnetic field of the inner magnetic pileāup region of comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cemetery dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera [Curdt and Keller, private communication]. Their characteristic shape generally involves a sudden decrease in magnetic field magnitude, a subsequent overshoot beyond initial field values and an asymptotic approach to the initial field somewhat reminiscent of the magnetic field signature after the AMPTE releases in the solar wind. These observations give a new way of analyzing ultraāfast dust particles incident on a spacecraft
Endometrial Cancer Presenting as Acute Urinary Retention: a Case Report and Review of the Literature
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Endometrial Cancer Presenting as Acute Urinary Retention : a Case Report and Review of The Literature
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Black holes and black branes in Lifshitz spacetimes
We construct analytic solutions describing black holes and black branes in
asymptotically Lifshitz spacetimes with arbitrary dynamical exponent z and for
arbitrary number of dimensions. The model considered consists of Einstein
gravity with negative cosmological constant, a scalar, and N U(1) gauge fields
with dilatonic-like couplings. We study the phase diagrams and thermodynamic
instabilities of the solution, and find qualitative differences between the
cases with 12.Comment: 27 pages, 10 figures; v2 references added, minor comments adde
- ā¦