8 research outputs found

    Platelet-derived exosomes are redox signaling particles

    No full text
    Sepsis, the body’s response to infection, is associated with extremely high mortality rates. Why a protective mechanism turns into a deadly clinical picture is a matter of debate, and goes largely unexplained. In previous work we demonstrated that platelet-derived microparticles (MP) can induce endothelial and vascular smooth muscle cell apoptosis in septic patients through NADPH oxidasedependent superoxide release [1]. In this work we sought to create a model for ex vivo generation of septic-like MP and to identify the pathways responsible for MP free radical release and effects. Septic shock is a condition related to the generation of high amounts of thrombin, TNFα and nitrogen reactive species. Human platelets exposed to the NO donors diethylamine-NONOate (0.5 mM) and nitroprusside (2 mM) for 20 minutes generated MP similar to those found in the blood of septic shock patients. Flow cytometry and western blot analysis of those MP, like their septi

    Oxidized Low-Density Lipoprotein–Dependent Platelet-Derived Microvesicles Trigger Procoagulant Effects and Amplify Oxidative Stress

    No full text
    The fundamental mechanisms that underlie platelet activation in atherothrombosis are still obscure. Oxidative stress is involved in central features of atherosclerosis. Platelet-derived microvesicles (PMVs) could be important mediators between oxidative stress and platelet activation. CD36 could be a receptor of PMVs, thus generating a PMV–CD36 complex. We aimed to investigate the detailed pathway by which oxidative damage contributes to platelet activation by the PMV–CD36 complex. We found that oxidized low-density lipoprotein stimulated the generation of PMVs. PMVs enhanced normal platelet activation, as assessed by the expression of integrin αIIbβ3, secretion of soluble P-selectin and platelet aggregation, but CD36-deficient platelets were not activated by PMVs. The function of the PMV–CD36 complex was mediated by the MKK4/JNK2 signaling axis. Meanwhile, PMVs increased the level of 8-iso-prostaglandin-F2α, a marker of oxidative stress, in a CD36- and phosphatidylserine-dependent manner. We concluded that PMVs are important mediators between oxidative stress and platelet activation. PMVs and CD36 may be effective targets for preventing platelet activation in cardiovascular diseases

    Exosomes and their Application in Biomedical Field: Difficulties and Advantages

    No full text
    corecore