5 research outputs found

    Identification of ACOX2 as a shared genetic risk factor for preeclampsia and cardiovascular disease

    No full text
    Preeclampsia (PE) is a serious complication of pregnancy, which is highly correlated with later life cardiovascular disease (CVD). Many risk factors are common for both diseases, but the contribution of shared genes remains to be determined. In this study, we used an integrative strategy to assess lipid traits as risk factors for PE and CVD by whole genome transcriptional profiling performed on Norwegian decidua basalis tissues (N=95) from preeclamptic and normal pregnancies and on blood lymphocytes (N=1240) from the San Antonio Family Heart Study (SAFHS). Among 222 genes that were differentially expressed (false discovery rate (FDR) P-value <0.05) between the PE, cases and controls, we found one gene, ACOX2 (acyl-coenzyme A oxidase 2, branched chain), that was downregulated in PE whose transcription was also inversely correlated with triglyceride levels (P=5.6 × 10−7; FDR P-value=0.0002) in SAFHS. We further report associations between SNPs in the ACOX2 gene and the transcription level (P-value=0.0045) of the gene, as well as with triglyceride levels (P-value=0.0051). ACOX2 is involved in bile acid production, a process that has been associated with both oxidative stress and regulation of triglyceride levels. Oxidative stress and increased triglyceride levels are known risk factors for CVD and both have also been associated with PE. Our results suggest that downregulation of ACOX2 is a shared risk factor for PE and CVD

    Genetic approaches in preeclampsia

    No full text
    Preeclampsia (PE) is a serious hypertensive disorder that affects up to 8% of all pregnancies annually. An established risk factor for PE is family history, clearly demonstrating an underlying genetic component to the disorder. To date, numerous genetic studies, using both the candidate gene and genome-wide approach, have been undertaken to tease out the genetic basis of PE and understand its origins. Such studies have identified some promising candidate genes such as STOX1 and ACVR2A. Nevertheless, researchers face ongoing challenges of replicating these genetic associations in different populations and performing the functional validation of identified genetic variants to determine their causality in the disorder. This chapter will review the genetic approaches used in the study of PE, discuss their limitations and possible confounders, and describe current strategies
    corecore