22 research outputs found

    Characterization of CTX-M ESBLs in Enterobacter cloacae, Escherichia coli and Klebsiella pneumoniae clinical isolates from Cairo, Egypt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high rate of resistance to 3<sup>rd </sup>generation cephalosporins among Enterobacteriaceae isolates from Egypt has been previously reported. This study aims to characterize the resistance mechanism (s) to extended spectrum cephalosporins among resistant clinical isolates at a medical institute in Cairo, Egypt.</p> <p>Methods</p> <p>Nonconsecutive <it>Klebsiella pneumoniae </it>(Kp), <it>Enterobacter cloacae </it>(ENT) and <it>Escherichia coli </it>(EC) isolates were obtained from the clinical laboratory at the medical institute. Antibiotic susceptibility was tested by CLSI disk diffusion and ESBL confirmatory tests. MICs were determined using broth microdilution. Isoelectric focusing (IEF) was used to determine the pI values, inhibitor profiles, and cefotaxime (CTX) hydrolysis by the β-lactamases. PCR and sequencing were performed using <it>bla</it><sub>CTX-M </sub>and IS<it>Ecp1</it>-specific primers, with DNA obtained from the clinical isolates. Conjugation experiments were done to determine the mobility of <it>bla</it><sub>CTX-M</sub>.</p> <p>Results</p> <p>All five clinical isolates were resistant to CTX, and were positive for ESBL screening. IEF revealed multiple β-lactamases produced by each isolate, including a β-lactamase with a pI of 8.0 in Kp and ENT and a β-lactamase with a pI of 9.0 in EC. Both β-lactamases were inhibited by clavulanic acid and hydrolyzed CTX. PCR and sequence analysis identified <it>bla</it><sub>CTX-M-14 </sub>in Kp and ENT and a <it>bla</it><sub>CTX-M-15 </sub>in EC. Both <it>bla</it><sub>CTX-M-14 </sub>and <it>bla</it><sub>CTX-M-15 </sub>were preceded by IS<it>Ecp1 </it>elements as revealed by partial sequence analysis of the upstream region of the <it>bla</it><sub>CTX-M </sub>genes. <it>bla</it><sub>CTX-M-15</sub> was transferable but not <it>bla</it><sub>CTX-M-14</sub>.</p> <p>Conclusion</p> <p>This is the first report of CTX-M-14 in Kp and ENT isolates from Egypt, the Middle East and North Africa.</p

    Synthesis, structure elucidation, and antifungal potential of certain new benzodioxole&ndash;imidazole molecular hybrids bearing ester functionalities

    No full text
    Reem I Al-Wabli,1 Alwah R Al-Ghamdi,1 Hazem A Ghabbour,2 Mohamed H Al-Agamy,3,4 Mohamed I Attia1,5 1Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; 2Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; 3Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; 4Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; 5Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt Background: The incidence of fungal infections is a growing serious global health burden. There is an urgent medical demand to acquire new antifungal drug-like compounds having azole nuclei to get rid of the drawbacks of the currently available azole antifungal agents. Methods: The target compounds 5a-r were synthesized in a four-step reaction sequence using the appropriate acetophenone derivative as a starting material. The antifungal potential of the title compounds was assessed using DIZ and MIC assays according to the reported standard procedures. Results: The newly synthesized oximino esters 5a-r were identified with the aid of various spectroscopic approaches. Their assigned chemical structures were confirmed via single-crystal X-ray structure of compound 5o. The molecular structure of compound 5o was crystallized in the triclinic, P-1, a=9.898 (3) &Aring;, b=10.433 (3) &Aring;, c=11.677 (4) &Aring;, &alpha;=86.886 (6)&deg;, &beta;=87.071 (7)&deg;, &gamma;=64.385 (6)&deg;, V=1,085.2 (6) &Aring;3, Z=2. The synthesized compounds 5a-r were in vitro evaluated for antifungal potential against four fungal strains. Compounds 5l and 5m bearing a trifluoromethylphenyl moiety showed the best anti-Candida albicans activity with minimum inhibitory concentration (MIC) value of 0.148 &micro;mol/mL, while compound 5b displayed the best activity toward Candida tropicalis with MIC value of 0.289 &micro;mol/mL. Compounds 5o and 5l were the most active congeners against Candida parapsilosis and Aspergillus niger, respectively. Conclusion: Single-crystal X-ray analysis of compound 5o confirmed without doubt the assigned chemical structures of the title compounds as well as confirmed the (E)-configuration of their oximino group. Compounds 5b, 5l, 5m, and 5o emerged as the most active compounds against the tested fungi and they could be considered as new antifungal lead candidates. Keywords: crystal structure, imidazole, benzodioxole, ester, antifunga

    Dissemination of VIM-producing Pseudomonas aeruginosa

    No full text

    First reported nosocomial outbreak of Serratia marcescens harboring blaIMP-4 and blaVIM-2 in a neonatal intensive care unit in Cairo, Egypt

    No full text
    Doaa Mohammad Ghaith,1 Mai Mahmoud Zafer,2 Dalia Kadry Ismail,1 Mohamed Hamed Al-Agamy,3,4 Marie Fe F Bohol,5 Ahmed Al-Qahtani,5 Mohammed N Al-Ahdal,5 Sherif M Elnagdy,6 Islam Yousif Mostafa7 1Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt; 2Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt; 3Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; 4Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; 5Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; 6Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt; 7Department of Microbiology, Faculty of Dentistry and Oral Medicine, Future University, Cairo, Egypt Introduction: Serratia marcescens is a significant hospital-acquired pathogen, and many outbreaks of S. marcescens infection have been reported in neonates. We report a sudden breakout of&nbsp;S. marcescens&nbsp;harboring the blaIMP-4 and&nbsp;blaVIM-2 metallo-&beta;-lactamase (MBL) genes that occurred from March to August 2015 in the neonatal intensive care unit of Cairo University Hospital, Cairo, Egypt. Methods: During the study period, 40 nonduplicate clinical isolates of&nbsp;S. marcescens&nbsp;were collected from blood culture samples. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to identify each isolate. Then, minimum inhibitory concentrations of different antibiotics were assessed by the Vitek 2 compact system. Screening of the MBL genes blaIMP,&nbsp;blaVIM,&nbsp;blaSIM-1,&nbsp;blaSPM-1, and&nbsp;blaGIM-1 as well as the carbapenemase genes KPC, NDM, OXA-48, SME-1, and SME-2 were evaluated. Pulsed field gel electrophoresis was preformed to detect the genetic relationship of the isolates. Results: Analysis showed that 37.5% of the S. marcescens clinical isolates were resistant to meropenem (minimum inhibitory concentrations &ge; 2 &micro;g/mL), and&nbsp;blaIMP-4&nbsp;and&nbsp;blaVIM-2 were the most prevalent MBL genes (42.5% and 37.5%, respectively). None of the other investigated genes were observed. Pulsed field gel electrophoresis typing revealed two discrete clones; 33/40 (82.5%) were pulsotype A and 7/40 (17.5%) were pulsotype B. Conclusion: Here, we report for the first time the detection of MBL-producing&nbsp;S. marcescens&nbsp;isolates, particularly IMP-4 and VIM-2 recovered from inpatients with bacteremias from the intensive care unit at Cairo University Hospital. Keywords: PFGE, outbreak, MALDI-TOFF, SME-1, SME-2, carbapenemases, MBL gene

    β-Lactamase Production in Key Gram-Negative Pathogen Isolates from the Arabian Peninsula

    No full text
    Infections due to Gram-negative bacilli (GNB) are a leading cause of morbidity and mortality worldwide. The extent of antibiotic resistance in GNB in countries of the Gulf Cooperation Council (GCC), namely, Saudi Arabia, United Arab Emirates, Kuwait, Qatar, Oman, and Bahrain, has not been previously reviewed. These countries share a high prevalence of extended-spectrum-β-lactamase (ESBL)- and carbapenemase-producing GNB, most of which are associated with nosocomial infections. Well-known and widespread β-lactamases genes (such as those for CTX-M-15, OXA-48, and NDM-1) have found their way into isolates from the GCCstates. However, less common and unique enzymes have also been identified. These include PER-7, GES-11, and PME-1. Several potential risk factors unique to the GCC states may have contributed to the emergence and spread of β-lactamases, including the unnecessary use of antibiotics and the large population of migrant workers, particularly from the Indian subcontinent. It is clear that active surveillance of antimicrobial resistance in the GCC states is urgently needed to address regional interventions that can contain the antimicrobial resistance issue
    corecore