43 research outputs found
Global large carnivore conservation and international law
International cooperation, including through international legal instruments, appears important for the conservation of large carnivores worldwide. This is due to, inter alia, the worrying conservation status and population trends of many large carnivore species; the importance of large carnivores for biodiversity conservation at large; their occurrence at low densities, with many populations extending across various countries; and the international nature of particular threats. For the 31 heaviest species in the order Carnivora, this study (i) documents to what extent existing international legal instruments contribute to large carnivore conservation, and (ii) identifies ways of optimizing their contribution in this regard. From this dual perspective, it reviews all global wildlife conservation treatiesâRamsar Wetlands Convention, World Heritage Convention, Convention on Trade in Endangered Species, Convention on Migratory Species (CMS), Convention on Biological Diversity (CBD)âand selected regional instruments, using standard international law research methodology. Results indicate that a substantial body of relevant international law already exists, whereas simultaneously there is clear potential for enhancing the contribution of international law to large carnivore conservation. Avenues for pursuing this include promotion of instrumentsâ effective implementation; clarification of their precise implications for large carnivore conservation; development of formal guidance; expansion of instrumentsâ scope in terms of species, sites and countries; and creation of new instruments. The CMS and CBD hold particular potential in some of these respects. The experiences being gained under European legal instruments constitute an interesting âlaboratoryâ regarding human coexistence with expanding large carnivore populations and transboundary cooperation at the (sub)population level
Extent, intensity and drivers of mammal defaunation:a continental-scale analysis across the Neotropics
Neotropical mammal diversity is currently threatened by several chronic human-induced pressures. We compiled 1,029 contemporary mammal assemblages surveyed across the Neotropics to quantify the continental-scale extent and intensity of defaunation and understand their determinants based on environmental covariates. We calculated a local defaunation index for all assemblagesâadjusted by a false-absence ratioâwhich was examined using structural equation models. We propose a hunting index based on socioenvironmental co-variables that either intensify or inhibit hunting, which we used as an additional predictor of defaunation. Mammal defaunation intensity across the Neotropics on average erased 56.5% of the local source fauna, with ungulates comprising the most ubiquitous losses. The extent of defaunation is widespread, but more incipient in hitherto relatively intact major biomes that are rapidly succumbing to encroaching deforestation frontiers. Assemblage-wide mammal body mass distribution was greatly reduced from a historical 95th-percentile of ~ 14Â kg to only ~ 4Â kg in modern assemblages. Defaunation and depletion of large-bodied species were primarily driven by hunting pressure and remaining habitat area. Our findings can inform guidelines to design transnational conservation policies to safeguard native vertebrates, and ensure that the âempty ecosystemâ syndrome will be deterred from reaching much of the New World tropics
Jaguar Densities across Human-Dominated Landscapes in Colombia: The Contribution of Unprotected Areas to Long Term Conservation
Large carnivores such as jaguars (Panthera onca) are species of conservation concern because they are suffering population declines and are keystone species in their ecosystems. Their large area requirements imply that unprotected and ever-increasing agricultural regions can be important habitats as they allow connectivity and dispersal among core protected areas. Yet information on jaguar densities across unprotected landscapes it is still scarce and crucially needed to assist management and range-wide conservation strategies. Our study provides the first jaguar density estimates of Colombia in agricultural regions which included cattle ranching, the main land use in the country, and oil palm cultivation, an increasing land use across the Neotropics. We used camera trapping across two agricultural landscapes located in the Magdalena River valley and in the Colombian llanos (47â53 stations respectively; >2000 trap nights at both sites) and classic and spatially explicit capture-recapture models with the sex of individuals as a covariate. Density estimates were 2.52±0.46â3.15±1.08 adults/100 km2 in the Magdalena valley, whereas 1.12±0.13â2.19±0.99 adults/100 km2 in the Colombian llanos, depending on analysis used. We suggest that jaguars are able to live across unprotected human-use areas and co-exist with agricultural landscapes including oil-palm plantations if natural areas and riparian habitats persist in the landscape and hunting of both jaguar and prey is limited. In the face of an expanding agriculture across the tropics we recommend land-use planning, adequate incentives, regulations, and good agricultural practices for range-wide jaguar connectivity and survival
Measuring local depletion of terrestrial game vertebrates by central-place hunters in rural Amazonia
The degree to which terrestrial vertebrate populations are depleted in tropical forests occupied by human communities has been the subject of an intense polarising debate that has important conservation implications. Conservation ecologists and practitioners are divided over the extent to which community-based subsistence offtake is compatible with ecologically functional populations of tropical forest game species. To quantify depletion envelopes of forest vertebrates around human communities, we deployed a total of 383 camera trap stations and 78 quantitative interviews to survey the peri-community areas controlled by 60 semi-subsistence communities over a combined area of over 3.2 million hectares in the MĂ©dio JuruĂĄ and UatumĂŁ regions of Central-Western Brazilian Amazonia. Our results largely conform with prior evidence that hunting large-bodied vertebrates reduces wildlife populations near settlements, such that they are only found at a distance to settlements where they are hunted less frequently. Camera trap data suggest that a select few harvest-sensitive species, including lowland tapir, are either repelled or depleted by human communities. Nocturnal and cathemeral species were detected relatively more frequently in disturbed areas close to communities, but individual species did not necessarily shift their activity patterns. Group biomass of all species was depressed in the wider neighbourhood of urban areas rather than communities. Interview data suggest that species traits, especially group size and body mass, mediate these relationships. Large-bodied, large-group-living species are detected farther from communities as reported by experienced informants. Long-established communities in our study regions have not âemptiedâ the surrounding forest. Low human population density and low hunting offtake due to abundant sources of alternative aquatic protein, suggest that these communities represent a best-case scenario for sustainable hunting of wildlife for food, thereby providing a conservative assessment of game depletion. Given this âbest-caseâ camera trap and interview-based evidence for hunting depletion, regions with higher human population densities, external trade in wildlife and limited access to alternative protein will likely exhibit more severe depletion
Are we eating the world's megafauna to extinction?
© 2019 The Authors. Conservation Letters published by Wiley Periodicals, Inc. Many of the world's vertebrates have experienced large population and geographic range declines due to anthropogenic threats that put them at risk of extinction. The largest vertebrates, defined as megafauna, are especially vulnerable. We analyzed how human activities are impacting the conservation status of megafauna within six classes: mammals, ray-finned fish, cartilaginous fish, amphibians, birds, and reptiles. We identified a total of 362 extant megafauna species. We found that 70% of megafauna species with sufficient information are decreasing and 59% are threatened with extinction. Surprisingly, direct harvesting of megafauna for human consumption of meat or body parts is the largest individual threat to each of the classes examined, and a threat for 98% (159/162) of threatened species with threat data available. Therefore, minimizing the direct killing of the world's largest vertebrates is a priority conservation strategy that might save many of these iconic species and the functions and services they provide
World Scientistsâ Warning of a Climate Emergency 2022
This is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this recordWe are now at âcode redâ on planet Earth. Humanity is unequivocally facing a climate emergency. The scale of untold human suffering, already immense, is rapidly growing with the escalating number of climate-related disasters. Therefore, we urge scientists, citizens, and world leaders to read this Special Report and quickly take the necessary actions to avoid the worst effects of climate change
Proconvulsant effects of high doses of venlafaxine in pentylenetetrazole-convulsive rats
Venlafaxine, an atypical antidepressant drug, has been used to treat several neurological disorders, presenting excellent efficacy and tolerability. Clinical seizures after venlafaxine treatment have occasionally been reported when the drug was used at very high doses or in combination with other medications. The aim of the present study was to investigate the convulsant effects of venlafaxine in rats under controlled laboratory conditions. Adult male Wistar rats (8 per group) receiving venlafaxine or saline at the doses of 25-150 mg/kg were subjected 30 min later to injections of pentylenetetrazole at the dose of 60 mg/kg. The animals receiving 75, 100 and 150 mg/kg venlafaxine presented increased severity of convulsion when compared to controls (P = 0.02, P = 0.04, and P = 0.0004, respectively). Indeed, an increased percentage of death was observed in these groups (50, 38, and 88%, respectively) when compared to the percentage of death in the controls (0%). The group receiving 150 mg/kg showed an reduction in death latency (999 ± 146 s) compared to controls (1800 ± 0 s; cut-off time). Indeed, in this group, all animals developed seizures prior to pentylenetetrazole administration. Surprisingly, the groups receiving venlafaxine at the doses of 25 and 50 mg/kg showed a tendency towards an increase in the latency to the first convulsion. These findings suggest that venlafaxine at doses of 25 and 50 mg/kg has some tendency to an anticonvulsant effect in the rat, whereas doses of 75, 100 and 150 mg/kg presented clear proconvulsant effects in rats submitted to the pentylenetetrazole injection. These findings are the first report in the literature concerning the role of venlafaxine in seizure genesis in the rat under controlled conditions