45 research outputs found

    Comparison of airway measurements during influenza-induced tachypnea in infant and adult cotton rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased respiratory rate (tachypnea) is frequently observed as a clinical sign of influenza pneumonia in pediatric patients admitted to the hospital. We previously demonstrated that influenza infection of adult cotton rats (<it>Sigmodon hispidus</it>) also results in tachypnea and wanted to establish whether this clinical sign was observed in infected infant cotton rats. We hypothesized that age-dependent differences in lung mechanics result in differences in ventilatory characteristics following influenza infection.</p> <p>Methods</p> <p>Lung tidal volume, dynamic elastance, resistance, and pleural pressure were measured in a resistance and compliance system on mechanically-ventilated anesthestized young (14–28 day old) and adult (6–12 week old) cotton rats. Animals at the same age were infected with influenza virus, and breathing rates and other respiratory measurements were recorded using a whole body flow plethysmograph.</p> <p>Results</p> <p>Adult cotton rats had significantly greater tidal volume (TV), and lower resistance and elastance than young animals. To evaluate the impact of this increased lung capacity and stiffening on respiratory disease, young and adult animals were infected intra-nasally with influenza A/Wuhan/359/95. Both age groups had increased respiratory rate and enhanced pause (<it>Penh</it>) during infection, suggesting lower airway obstruction. However, in spite of significant tachypnea, the infant (unlike the adult) cotton rats maintained the same tidal volume, resulting in an increased minute volume. In addition, the parameters that contribute to <it>Penh </it>were different: while relaxation time between breaths and time of expiration was decreased in both age groups, a disproportionate increase in peak inspiratory and expiratory flow contributed to the increase in <it>Penh </it>in infant animals.</p> <p>Conclusion</p> <p>While respiratory rate is increased in both adult and infant influenza-infected cotton rats, the volume of air exchanged per minute (minute volume) is increased in the infant animals only. This is likely to be a consequence of greater lung elastance in the very young animals. This model replicates many respiratory features of humans and consequently may be a useful tool to investigate new strategies to treat respiratory disease in influenza-infected infants.</p

    Transmission of Avian Influenza A Viruses among Species in an Artificial Barnyard

    Get PDF
    Waterfowl and shorebirds harbor and shed all hemagglutinin and neuraminidase subtypes of influenza A viruses and interact in nature with a broad range of other avian and mammalian species to which they might transmit such viruses. Estimating the efficiency and importance of such cross-species transmission using epidemiological approaches is difficult. We therefore addressed this question by studying transmission of low pathogenic H5 and H7 viruses from infected ducks to other common animals in a quasi-natural laboratory environment designed to mimic a common barnyard. Mallards (Anas platyrhynchos) recently infected with H5N2 or H7N3 viruses were introduced into a room housing other mallards plus chickens, blackbirds, rats and pigeons, and transmission was assessed by monitoring virus shedding (ducks) or seroconversion (other species) over the following 4 weeks. Additional animals of each species were directly inoculated with virus to characterize the effect of a known exposure. In both barnyard experiments, virus accumulated to high titers in the shared water pool. The H5N2 virus was transmitted from infected ducks to other ducks and chickens in the room either directly or through environmental contamination, but not to rats or blackbirds. Ducks infected with the H7N2 virus transmitted directly or indirectly to all other species present. Chickens and blackbirds directly inoculated with these viruses shed significant amounts of virus and seroconverted; rats and pigeons developed antiviral antibodies, but, except for one pigeon, failed to shed virus

    Managing urinary tract infections

    Get PDF
    Urinary tract infections (UTI) are common in childhood. Presence of pyuria and bacteriuria in an appropriately collected urine sample are diagnostic of UTI. The risk of UTI is increased with an underlying urological abnormality such as vesicoureteral reflux, constipation, and voiding dysfunction. Patients with acute pyelonephritis are at risk of renal scarring and subsequent complications such as hypertension, proteinuria with and without FSGS, pregnancy-related complications and even end-stage renal failure. The relevance and the sequence of the renal imaging following initial UTI, and the role of antimicrobial prophylaxis and surgical intervention are currently undergoing an intense debate. Prompt treatment of UTI and appropriate follow-up of those at increased risk of recurrence and/or renal scarring are important

    Treatment with novel RSV Ig RI-002 controls viral replication and reduces pulmonary damage in immunocompromised Sigmodon hispidus

    No full text
    Respiratory syncytial virus (RSV) is a significant cause of bronchiolitis and pneumonia in several high health risk populations, including infants, elderly and immunocompromised individuals. Mortality in hematopoietic stem cell transplant recipients with lower respiratory tract RSV infection can exceed 80%. It has been shown that RSV replication in immunosuppressed individuals is significantly prolonged, but the contribution of pulmonary damage, if any, to the pathogenesis of RSV disease in this susceptible population is not known. In this work, we tested RI-002, a novel standardized Ig formulation containing a high level of RSV-neutralizing Ab, for its ability to control RSV infection in immunocompromised cotton rats Sigmodon hispidus. Animals immunosuppressed by repeat cyclophosphamide injections were infected with RSV and treated with RI-002. Prolonged RSV replication, characteristic of immunosuppressed cotton rats, was inhibited by RI-002 administration. Ab treatment reduced detection of systemic dissemination of viral RNA. Importantly, pulmonary interstitial inflammation and epithelial hyperplasia that were significantly elevated in immunosuppressed animals were reduced by RI-002 administration. These results indicate the potential of RI-002 to improve outcome of RSV infection in immunocompromised subjects not only by controlling viral replication, but also by reducing damage to lung parenchyma and epithelial airway lining, but further studies are needed

    A report on 528 intragenic deletions detected in DMD and BMD patients by an Italian collaborative study.

    No full text
    The results of a collaborative study involving about one third of the total DMD and BMD cases living in the Italian territory are reported. The analysis of the breakpoint frequency by intron revealed significant differences among regional groups of DMD patients (for introns 2, 11 and 50 in Sardinia and for introns 9 and 45 in northeastern Italy), whereas no regional differences were observed among regional groups of BMD patients. These differences involve the same Italian regions which previous studies, performed by different markers, identified as "genetically differentiated". The data support the possibility of a differential distribution among populations of some intronic sequences, facilitating the origin of deletion breakpoints within the dystrophin gen
    corecore