14 research outputs found

    Osteogenesis imperfecta

    Get PDF
    Skeletal deformity and bone fragility are the hallmarks of the brittle bone dysplasia osteogenesis imperfecta. The diagnosis of osteogenesis imperfecta usually depends on family history and clinical presentation characterized by a fracture (or fractures) during the prenatal period, at birth or in early childhood; genetic tests can confirm diagnosis. Osteogenesis imperfecta is caused by dominant autosomal mutations in the type I collagen coding genes (COL1A1 and COL1A2) in about 85% of individuals, affecting collagen quantity or structure. In the past decade, (mostly) recessive, dominant and X-linked defects in a wide variety of genes encoding proteins involved in type I collagen synthesis, processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells have been shown to cause osteogenesis imperfecta. The large number of causative genes has complicated the classic classification of the disease, and although a new genetic classification system is widely used, it is still debated. Phenotypic manifestations in many organs, in addition to bone, are reported, such as abnormalities in the cardiovascular and pulmonary systems, skin fragility, muscle weakness, hearing loss and dentinogenesis imperfecta. Management involves surgical and medical treatment of skeletal abnormalities, and treatment of other complications. More innovative approaches based on gene and cell therapy, and signalling pathway alterations, are under investigation

    Strategies of mucosal immunotherapy for allergic diseases

    Full text link

    Katalyse, Fermente und Fermentsysteme

    Full text link

    Religiös-spirituelle Begleitung von Demenzkranken aus der Sicht von PflegekrÀften

    Full text link

    Regulation of cell signalling by uPAR

    Full text link

    Mismatch Negativity (MMN) as an Index of Cognitive Dysfunction

    Full text link

    Precision Electroweak Measurements on the Z resonance.

    Get PDF
    We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron–positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward–backward asymmetries and polarised asymmetries. The mass and width of the Z boson, mZ and ΓZ, and its couplings to fermions, for example the ρ parameter and the effective electroweak mixing angle for leptons, are precisely measured: The number of light neutrino species is determined to be 2.9840±0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward–backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, , and the mass of the W boson, . These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of mt and mW, the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than at 95% confidence level
    corecore