278 research outputs found

    Growth hormone axis in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) in children is associated with dramatic changes in the growth hormone (GH) and insulin-like growth factor (IGF-1) axis, resulting in growth retardation. Moderate-to-severe growth retardation in CKD is associated with increased morbidity and mortality. Renal failure is a state of GH resistance and not GH deficiency. Some mechanisms of GH resistance are: reduced density of GH receptors in target organs, impaired GH-activated post-receptor Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and reduced levels of free IGF-1 due to increased inhibitory IGF-binding proteins (IGFBPs). Treatment with recombinant human growth hormone (rhGH) has been proven to be safe and efficacious in children with CKD. Even though rhGH has been shown to improve catch-up growth and to allow the child to achieve normal adult height, the final adult height is still significantly below the genetic target. Growth retardation may persist after renal transplantation due to multiple factors, such as steroid use, decreased renal function and an abnormal GH–IGF1 axis. Those below age 6 years are the ones to benefit most from transplantation in demonstrating acceleration in linear growth. Newer treatment modalities targeting the GH resistance with recombinant human IGF-1 (rhIGF-1), recombinant human IGFBP3 (rhIGFBP3) and IGFBP displacers are under investigation and may prove to be more effective in treating growth failure in CKD

    C. elegans SWAN-1 Binds to EGL-9 and Regulates HIF-1-Mediated Resistance to the Bacterial Pathogen Pseudomonas aeruginosa PAO1

    Get PDF
    Pseudomonas aeruginosa is a nearly ubiquitous human pathogen, and infections can be lethal to patients with impaired respiratory and immune systems. Prior studies have established that strong loss-of-function mutations in the egl-9 gene protect the nematode C. elegans from P. aeruginosa PAO1 fast killing. EGL-9 inhibits the HIF-1 transcription factor via two pathways. First, EGL-9 is the enzyme that targets HIF-1 for oxygen-dependent degradation via the VHL-1 E3 ligase. Second, EGL-9 inhibits HIF-1-mediated gene expression through a VHL-1-independent mechanism. Here, we show that a loss-of-function mutation in hif-1 suppresses P. aeruginosa PAO1 resistance in egl-9 mutants. Importantly, we find stabilization of HIF-1 protein is not sufficient to protect C. elegans from P. aeruginosa PAO1 fast killing. However, mutations that inhibit both EGL-9 pathways result in higher levels of HIF-1 activity and confer resistance to the pathogen. Using forward genetic screens, we identify additional mutations that confer resistance to P. aeruginosa. In genetic backgrounds that stabilize C. elegans HIF-1 protein, loss-of-function mutations in swan-1 increase the expression of hypoxia response genes and protect C. elegans from P. aeruginosa fast killing. SWAN-1 is an evolutionarily conserved WD-repeat protein belonging to the AN11 family. Yeast two-hybrid and co-immunoprecipitation assays show that EGL-9 forms a complex with SWAN-1. Additionally, we present genetic evidence that the DYRK kinase MBK-1 acts downstream of SWAN-1 to promote HIF-1-mediated transcription and to increase resistance to P. aeruginosa. These data support a model in which SWAN-1, MBK-1 and EGL-9 regulate HIF-1 transcriptional activity and modulate resistance to P. aeruginosa PAO1 fast killing

    Hypertension and type 2 diabetes: What family physicians can do to improve control of blood pressure - an observational study

    Get PDF
    Background: The prevalence of type 2 diabetes is rising, and most of these patients also have hypertension, substantially increasing the risk of cardiovascular morbidity and mortality. The majority of these patients do not reach target blood pressure levels for a wide variety of reasons. When a literature review provided no clear focus for action when patients are not at target, we initiated a study to identify characteristics of patients and providers associated with achieving target BP levels in community-based practice. Methods: We conducted a practice- based, cross-sectional observational and mailed survey study. The setting was the practices of 27 family physicians and nurse practitioners in 3 eastern provinces in Canada. The participants were all patients with type 2 diabetes who could understand English, were able to give consent, and would be available for follow-up for more than one year. Data were collected from each patient’s medical record and from each patient and physician/nurse practitioner by mailed survey. Our main outcome measures were overall blood pressure at target (< 130/80), systolic blood pressure at target, and diastolic blood pressure at target. Analysis included initial descriptive statistics, logistic regression models, and multivariate regression using hierarchical nonlinear modeling (HNLM). Results: Fifty-four percent were at target for both systolic and diastolic pressures. Sixty-two percent were at systolic target, and 79% were at diastolic target. Patients who reported eating food low in salt had higher odds of reaching target blood pressure. Similarly, patients reporting low adherence to their medication regimen had lower odds of reaching target blood pressure. Conclusions: When primary care health professionals are dealing with blood pressures above target in a patient with type 2 diabetes, they should pay particular attention to two factors. They should inquire about dietary salt intake, strongly emphasize the importance of reduction, and refer for detailed counseling if necessary. Similarly, they should inquire about adherence to the medication regimen, and employ a variety of patient-oriented strategies to improve adherence

    Truncated Power Laws Reveal a Link between Low-Level Behavioral Processes and Grouping Patterns in a Colonial Bird

    Get PDF
    Background: Departures from power law group size frequency distributions have been proposed as a useful tool to link individual behavior with population patterns and dynamics, although examples are scarce for wild animal populations. Methodology/Principal Findings: We studied a population of Lesser kestrels (Falco naumanni) breeding in groups (colonies) from one to ca. 40 breeding pairs in 10,000 km 2 in NE Spain. A 3.5 fold steady population increase occurred during the eight-year study period, accompanied by a geographical expansion from an initial subpopulation which in turn remained stable in numbers. This population instability was mainly driven by first-breeders, which are less competitive at breeding sites, being relegated to breed solitarily or in small colony sizes, and disperse farther than adults. Colony size frequency distributions shifted from an initial power law to a truncated power law mirroring population increase. Thus, we hypothesized that population instability was behind the truncation of the power law. Accordingly, we found a power law distribution through years in the initial subpopulation, and a match between the power law breakpoint (at ca. ten pairs) and those colony sizes from which the despotic behavior of colony owners started to impair the settlement of newcomers. Moreover, the instability hypothesis was further supported by snapshot data from another population of Lesser kestrels in SW Spain suffering a population decline. Conclusions/Significance: Appropriate analysis of the scaling properties of grouping patterns has unraveled the lin

    Serotonergic chemosensory neurons modify the <i>C. elegans</i> immune response by regulating G-protein signaling in epithelial cells

    Get PDF
    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food

    Matrix Metalloproteinase-10 Is Required for Lung Cancer Stem Cell Maintenance, Tumor Initiation and Metastatic Potential

    Get PDF
    Matrix metalloproteinases (Mmps) stimulate tumor invasion and metastasis by degrading the extracellular matrix. Here we reveal an unexpected role for Mmp10 (stromelysin 2) in the maintenance and tumorigenicity of mouse lung cancer stem-like cells (CSC). Mmp10 is highly expressed in oncosphere cultures enriched in CSCs and RNAi-mediated knockdown of Mmp10 leads to a loss of stem cell marker gene expression and inhibition of oncosphere growth, clonal expansion, and transformed growth in vitro. Interestingly, clonal expansion of Mmp10 deficient oncospheres can be restored by addition of exogenous Mmp10 protein to the culture medium, demonstrating a direct role for Mmp10 in the proliferation of these cells. Oncospheres exhibit enhanced tumor-initiating and metastatic activity when injected orthotopically into syngeneic mice, whereas Mmp10-deficient cultures show a severe defect in tumor initiation. Conversely, oncospheres implanted into syngeneic non-transgenic or Mmp10−/− mice show no significant difference in tumor initiation, growth or metastasis, demonstrating the importance of Mmp10 produced by cancer cells rather than the tumor microenvironment in lung tumor initiation and maintenance. Analysis of gene expression data from human cancers reveals a strong positive correlation between tumor Mmp10 expression and metastatic behavior in many human tumor types. Thus, Mmp10 is required for maintenance of a highly tumorigenic, cancer-initiating, metastatic stem-like cell population in lung cancer. Our data demonstrate for the first time that Mmp10 is a critical lung cancer stem cell gene and novel therapeutic target for lung cancer stem cells

    Who Is at Risk for Diagnostic Discrepancies? Comparison of Pre- and Postmortal Diagnoses in 1800 Patients of 3 Medical Decades in East and West Berlin

    Get PDF
    <div><h3>Background</h3><p>Autopsy rates in Western countries consistently decline to an average of <5%, although clinical autopsies represent a reasonable tool for quality control in hospitals, medically and economically. Comparing pre- and postmortal diagnoses, diagnostic discrepancies as uncovered by clinical autopsies supply crucial information on how to improve clinical treatment. The study aimed at analyzing current diagnostic discrepancy rates, investigating their influencing factors and identifying risk profiles of patients that could be affected by a diagnostic discrepancy.</p> <h3>Methods and Findings</h3><p>Of all adult autopsy cases of the Charité Institute of Pathology from the years 1988, 1993, 1998, 2003 and 2008, the pre- and postmortal diagnoses and all demographic data were analyzed retrospectively. Based on power analysis, 1,800 cases were randomly selected to perform discrepancy classification (class I-VI) according to modified Goldman criteria. The rate of discrepancies in major diagnoses (class I) was 10.7% (95% CI: 7.7%–14.7%) in 2008 representing a reduction by 15.1%. Subgroup analysis revealed several influencing factors to significantly correlate with the discrepancy rate. Cardiovascular diseases had the highest frequency among class-I-discrepancies. Comparing the 1988-data of East- and West-Berlin, no significant differences were found in diagnostic discrepancies despite an autopsy rate differing by nearly 50%. A risk profile analysis visualized by intuitive heatmaps revealed a significantly high discrepancy rate in patients treated in low or intermediate care units at community hospitals. In this collective, patients with genitourinary/renal or infectious diseases were at particularly high risk.</p> <h3>Conclusions</h3><p>This is the current largest and most comprehensive study on diagnostic discrepancies worldwide. Our well-powered analysis revealed a significant rate of class-I-discrepancies indicating that autopsies are still of value. The identified risk profiles may aid both pathologists and clinicians to identify patients at increased risk for a discrepant diagnosis and possibly suboptimal treatment intra vitam.</p> </div

    Translocation of a Bak C-Terminus Mutant from Cytosol to Mitochondria to Mediate Cytochrome c Release: Implications for Bak and Bax Apoptotic Function

    Get PDF
    One of two proapoptotic Bcl-2 proteins, Bak or Bax, is required to permeabilize the mitochondrial outer membrane during apoptosis. While Bax is mostly cytosolic and translocates to mitochondria following an apoptotic stimulus, Bak is constitutively integrated within the outer membrane. Membrane anchorage occurs via a C-terminal transmembrane domain that has been studied in Bax but not in Bak, therefore what governs their distinct subcellular distribution is uncertain. In addition, whether the distinct subcellular distributions of Bak and Bax contributes to their differential regulation during apoptosis remains unclear.To gain insight into Bak and Bax targeting to mitochondria, elements of the Bak C-terminus were mutated, or swapped with those of Bax. Truncation of the C-terminal six residues (C-segment) or substitution of three basic residues within the C-segment destabilized Bak. Replacing the Bak C-segment with that from Bax rescued stability and function, but unexpectedly resulted in a semi-cytosolic protein, termed Bak/BaxCS. When in the cytosol, both Bax and Bak/BaxCS sequestered their hydrophobic transmembrane domains in their hydrophobic surface groove. Upon apoptotic signalling, Bak/BaxCS translocated to the mitochondrial outer membrane, inserted its transmembrane domain, oligomerized, and released cytochrome c. Despite this Bax-like subcellular distribution, Bak/BaxCS retained Bak-like regulation following targeting of Mcl-1.Residues in the C-segment of Bak and of Bax contribute to their distinct subcellular localizations. That a semi-cytosolic form of Bak, Bak/BaxCS, could translocate to mitochondria and release cytochrome c indicates that Bak and Bax share a conserved mode of activation. In addition, the differential regulation of Bak and Bax by Mcl-1 is predominantly independent of the initial subcellular localizations of Bak and Bax

    A Filamentous Hemagglutinin-Like Protein of Xanthomonas axonopodis pv. citri, the Phytopathogen Responsible for Citrus Canker, Is Involved in Bacterial Virulence

    Get PDF
    Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker has a number of protein secretion systems and among them, at least one type V protein secretion system belonging to the two-partner secretion pathway. This system is mainly associated to the translocation of large proteins such as adhesins to the outer membrane of several pathogens. Xanthomonas axonopodis pv. citri possess a filamentous hemagglutinin-like protein in close vicinity to its putative transporter protein, XacFhaB and XacFhaC, respectively. Expression analysis indicated that XacFhaB was induced in planta during plant-pathogen interaction. By mutation analysis of XacFhaB and XacFhaC genes we determined that XacFhaB is involved in virulence both in epiphytic and wound inoculations, displaying more dispersed and fewer canker lesions. Unexpectedly, the XacFhaC mutant in the transporter protein produced an intermediate virulence phenotype resembling wild type infection, suggesting that XacFhaB could be secreted by another partner different from XacFhaC. Moreover, XacFhaB mutants showed a general lack of adhesion and were affected in leaf surface attachment and biofilm formation. In agreement with the in planta phenotype, adhesin lacking cells moved faster in swarming plates. Since no hyperflagellation phenotype was observed in this bacteria, the faster movement may be attributed to the lack of cell-to-cell aggregation. Moreover, XacFhaB mutants secreted more exopolysaccharide that in turn may facilitate its motility. Our results suggest that this hemagglutinin-like protein is required for tissue colonization being mainly involved in surface attachment and biofilm formation, and that plant tissue attachment and cell-to-cell aggregation are dependent on the coordinated action of adhesin molecules and exopolysaccharides
    corecore