230 research outputs found

    Importance of xenarthrans in the eco-epidemiology of Paracoccidioides brasiliensis

    Get PDF
    Abstract\ud Background\ud Several pathogens that cause important zoonotic diseases have been frequently associated with armadillos and other xenarthrans. This mammal group typically has evolved on the South American continent and many of its extant species are seriously threatened with extinction. Natural infection of armadillos with Paracoccidioides brasiliensis in hyperendemic areas has provided a valuable opportunity for understanding the role of this mammal in the eco-epidemiology of Paracoccidioidomycosis (PCM), one of the most important systemic mycoses in Latin America.\ud \ud Findings\ud This study aimed to detect P. brasiliensis in different xenarthran species (Dasypus novemcinctus, Cabassous spp., Euphractus sexcinctus, Tamandua tetradactyla and Myrmecophaga tridactyla), by molecular and mycological approaches, in samples obtained by one of the following strategies: i) from road-killed animals (n = 6); ii) from naturally dead animals (n = 8); iii) from animals that died in captivity (n = 9); and iv) from living animals captured from the wild (n = 2). Specific P. brasiliensis DNA was detected in several organs among 7/20 nine-banded armadillos (D. novemcinctus) and in 2/2 anteaters (M. tridactyla). The fungus was also cultured in tissue samples from one of two armadillos captured from the wild.\ud \ud Conclusion\ud Members of the Xenarthra Order, especially armadillos, have some characteristics, including a weak cellular immune response and low body temperature, which make them suitable models for studying host-pathogen interaction. P. brasiliensis infection in wild animals, from PCM endemic areas, may be more common than initially postulated and reinforces the use of these animals as sentinels for the pathogen in the environment.This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-n° 05/56771-9, 06/03597-4). We also thank the Departamento de Estradas de Rodagem do Estado de São Paulo (DER), as well as Prof. Dr. Reinaldo José da Silva and Juliana Griese for information about the road-killed animals.This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESPn° 05/567719, 06/035974). We also thank the Departamento de Estradas de Rodagem do Estado de São Paulo (DER), as well as Prof. Dr. Reinaldo José da Silva and Juliana Griese for information about the roadkilled animals

    Serum levels of heat shock protein 27 in patients with acute ischemic stroke

    Get PDF
    Expression of intracellular heat shock protein 27 (Hsp27) rises in the brain of animal models of cerebral ischemia and stroke. Hsp27 is also released into the circulation and the aim of the present study was to investigated if serum Hsp27 (sHsp27) levels are altered in patients with acute ischemic stroke. sHsp27 was measured in 15 patients with acute ischemic stroke and in 14 control subjects comparable for age, sex, and cardiovascular risk factors. In patients, measurements were performed at admission and 1, 2, and 30 days thereafter. At admission, mean sHsp27 values were threefold higher in patients than in controls. In patients, sHsp27 values dropped after 24 h, rose again at 48 h, and markedly declined at 30 days, indicating the presence of a temporal trend of sHsp27 values following acute ischemic stroke

    Multi-centre and multi-vendor reproducibility of a standardized protocol for quantitative susceptibility Mapping of the human brain at 3T

    Get PDF
    Quantitative Susceptibility Mapping (QSM) is an MRI-based technique allowing the non-invasive quantification of iron content and myelination in the brain. The RIN – Neuroimaging Network established an optimized and harmonized protocol for QSM across ten sites with 3T MRI systems from three different vendors to enable multicentric studies. The assessment of the reproducibility of this protocol is crucial to establish susceptibility as a quantitative biomarker. In this work, we evaluated cross-vendor reproducibility in a group of six traveling brains. Then, we recruited fifty-one volunteers and measured the variability of QSM values in a cohort of healthy subjects scanned at different sites, simulating a multicentric study. Both voxelwise and Region of Interest (ROI)-based analysis on cortical and subcortical gray matter were performed. The traveling brain study yielded high structural similarity (∼0.8) and excellent reproducibility comparing maps acquired on scanners from two different vendors. Depending on the ROI, we reported a quantification error ranging from 0.001 to 0.017 ppm for the traveling brains. In the cohort of fifty-one healthy subjects scanned at nine different sites, the ROI-dependent variability of susceptibility values, of the order of 0.005–0.025 ppm, was comparable to the result of the traveling brain experiment. The harmonized QSM protocol of the RIN – Neuroimaging Network provides a reliable quantification of susceptibility in both cortical and subcortical gray matter regions and it is ready for multicentric and longitudinal clinical studies in neurological and pychiatric diseases

    Quality assessment, variability and reproducibility of anatomical measurements derived from T1-weighted brain imaging: The RIN–Neuroimaging Network case study

    Get PDF
    Initiatives for the collection of harmonized MRI datasets are growing continuously, opening questions on the reliability of results obtained in multi-site contexts. Here we present the assessment of the brain anatomical variability of MRI-derived measurements obtained from T1-weighted images, acquired according to the Standard Operating Procedures, promoted by the RIN-Neuroimaging Network. A multicentric dataset composed of 77 brain T1w acquisitions of young healthy volunteers (mean age = 29.7 ± 5.0 years), collected in 15 sites with MRI scanners of three different vendors, was considered. Parallelly, a dataset of 7 “traveling” subjects, each undergoing three acquisitions with scanners from different vendors, was also used. Intra-site, intra-vendor, and inter-site variabilities were evaluated in terms of the percentage standard deviation of volumetric and cortical thickness measures. Image quality metrics such as contrast-to-noise and signal-to-noise ratio in gray and white matter were also assessed for all sites and vendors. The results showed a measured global variability that ranges from 11% to 19% for subcortical volumes and from 3% to 10% for cortical thicknesses. Univariate distributions of the normalized volumes of subcortical regions, as well as the distributions of the thickness of cortical parcels appeared to be significantly different among sites in 8 subcortical (out of 17) and 21 cortical (out of 68) regions of i nterest in the multicentric study. The Bland-Altman analysis on “traveling” brain measurements did not detect systematic scanner biases even though a multivariate classification approach was able to classify the scanner vendor from brain measures with an accuracy of 0.60 ± 0.14 (chance level 0.33)

    Mammalian MCM Loading in Late-G1 Coincides with Rb Hyperphosphorylation and the Transition to Post-Transcriptional Control of Progression into S-Phase

    Get PDF
    BACKGROUND: Control of the onset of DNA synthesis in mammalian cells requires the coordinated assembly and activation of the pre-Replication Complex. In order to understand the regulatory events controlling preRC dynamics, we have investigated how the timing of preRC assembly relates temporally to other biochemical events governing progress into S-phase. METHODOLOGY/PRINCIPAL FINDING: In murine and Chinese hamster (CHO) cells released from quiescence, the loading of the replicative MCM helicase onto chromatin occurs in the final 3-4 hrs of G(1). Cdc45 and PCNA, both of which are required for G(1)-S transit, bind to chromatin at the G(1)-S transition or even earlier in G(1), when MCMs load. An RNA polymerase II inhibitor (DRB) was added to synchronized murine keratinocytes to show that they are no longer dependent on new mRNA synthesis 3-4 hrs prior to S-phase entry, which is also true for CHO and human cells. Further, CHO cells can progress into S-phase on time, and complete S-phase, under conditions where new mRNA synthesis is significantly compromised, and such mRNA suppression causes no adverse effects on preRC dynamics prior to, or during, S-phase progression. Even more intriguing, hyperphosphorylation of Rb coincides with the start of MCM loading and, paradoxically, with the time in late-G(1) when de novo mRNA synthesis is no longer rate limiting for progression into S-phase. CONCLUSIONS/SIGNIFICANCE: MCM, Cdc45, and PCNA loading, and the subsequent transit through G(1)-S, do not depend on concurrent new mRNA synthesis. These results indicate that mammalian cells pass through a distinct transition in late-G(1) at which time Rb becomes hyperphosphorylated and MCM loading commences, but that after this transition the control of MCM, Cdc45, and PCNA loading and the onset of DNA replication are regulated at the post-transcriptional level

    Effect of seasonal malaria chemoprevention plus azithromycin on Plasmodium falciparum transmission: gametocyte infectivity and mosquito fitness.

    Get PDF
    BACKGROUND: Seasonal malaria chemoprevention (SMC) consists of administration of sulfadoxine-pyrimethamine (SP) + amodiaquine (AQ) at monthly intervals to children during the malaria transmission period. Whether the addition of azithromycin (AZ) to SMC could potentiate the benefit of the intervention was tested through a double-blind, randomized, placebo-controlled trial. The effect of SMC and the addition of AZ, on malaria transmission and on the life history traits of Anopheles gambiae mosquitoes have been investigated. METHODS: The study included 438 children randomly selected from among participants in the SMC + AZ trial and 198 children from the same area who did not receive chemoprevention. For each participant in the SMC + AZ trial, blood was collected 14 to 21 days post treatment, examined for the presence of malaria sexual and asexual stages and provided as a blood meal to An. gambiae females using a direct membrane-feeding assay. RESULTS: The SMC treatment, with or without AZ, significantly reduced the prevalence of asexual Plasmodium falciparum (LRT X22 = 69, P < 0.0001) and the gametocyte prevalence (LRT X22 = 54, P < 0.0001). In addition, the proportion of infectious feeds (LRT X22 = 61, P < 0.0001) and the prevalence of oocysts among exposed mosquitoes (LRT X22 = 22.8, P < 0.001) was reduced when mosquitoes were fed on blood from treated children compared to untreated controls. The addition of AZ to SPAQ was associated with an increased proportion of infectious feeds (LRT X21 = 5.2, P = 0.02), suggesting a significant effect of AZ on gametocyte infectivity. There was a slight negative effect of SPAQ and SPAQ + AZ on mosquito survival compared to mosquitoes fed with blood from control children (LRTX22 = 330, P < 0.0001). CONCLUSION: This study demonstrates that SMC may contribute to a reduction in human to mosquito transmission of P. falciparum, and the reduced mosquito longevity observed for females fed on treated blood may increase the benefit of this intervention in control of malaria. The addition of AZ to SPAQ in SMC appeared to enhance the infectivity of gametocytes providing further evidence that this combination is not an appropriate intervention

    Expression and function of αβ1 integrins in pancretic beta (INS-1) cells

    Get PDF
    Integrin-extracellular matrix interactions are important determinants of beta cell behaviours. The β1 integrin is a well-known regulator of beta cell activities; however, little is known of its associated α subunits. In the present study, αβ1 integrin expression was examined in the rat insulinoma cell line (INS-1) to identify their role in beta cell survival and function. Seven α subunits associated with β1 integrin were identified, including α1-6 and αV. Among these heterodimers, α3β1 was most highly expressed. Common ligands for the α3β1 integrin, including fibronectin, laminin, collagen I and collagen IV were tested to identify the most suitable matrix for INS-1 cell proliferation and function. Cells exposed to collagen I and IV demonstrated significant increases in adhesion, spreading, cell viability, proliferation, and FAK phosphorylation when compared to cells cultured on fibronectin, laminin and controls. Integrin-dependent attachment also had a beneficial effect on beta cell function, increasing Pdx-1 and insulin gene and protein expression on collagens I and IV, in parallel with increased basal insulin release and enhanced insulin secretion upon high glucose challenge. Furthermore, functional blockade of α3β1 integrin decreased cell adhesion, spreading and viability on both collagens and reduced Pdx-1 and insulin expression, indicating that its interactions with collagen matrices are important for beta cell survival and function. These results demonstrate that specific αβ1 integrin-ECM interactions are critical regulators of INS-1 beta cell survival and function and will be important in designing optimal conditions for cell-based therapies for diabetes treatment

    Essential Role of Cdc42 in Ras-Induced Transformation Revealed by Gene Targeting

    Get PDF
    The ras proto-oncogene is one of the most frequently mutated genes in human cancer. However, given the prevalence of activating mutations in Ras and its association with aggressive forms of cancer, attempts to therapeutically target aberrant Ras signaling have been largely disappointing. This lack of progress highlights the deficiency in our understanding of cellular pathways required for Ras-mediated tumorigenesis and suggests the importance of identifying new molecular pathways associated with Ras-driven malignancies. Cdc42 is a Ras-related small GTPase that is known to play roles in oncogenic processes such as cell growth, survival, invasion, and migration. A pan-dominant negative mutant overexpression approach to suppress Cdc42 and related pathways has previously shown a requirement for Cdc42 in Ras-induced anchorage-independent cell growth, however the lack of specificity of such approaches make it difficult to determine if effects are directly related to changes in Cdc42 activity or other Rho family members. Therefore, in order to directly and unambiguously address the role of Cdc42 in Ras-mediated transformation, tumor formation and maintenance, we have developed a model of conditional cdc42 gene in Ras-transformed cells. Loss of Cdc42 drastically alters the cell morphology and inhibits proliferation, cell cycle progression and tumorigenicity of Ras-transformed cells, while non-transformed cells or c-Myc transformed cells are largely unaffected. The loss of Cdc42 in Ras-transformed cells results in reduced Akt signaling, restoration of which could partially rescues the proliferation defects associated with Cdc42 loss. Moreover, disruption of Cdc42 function in established tumors inhibited continued tumor growth. These studies implicate Cdc42 in Ras-driven tumor growth and suggest that targeting Cdc42 is beneficial in Ras-mediated malignancies
    corecore