6 research outputs found
Anisotropic Impurity-States, Quasiparticle Scattering and Nematic Transport in Underdoped Ca(Fe1-xCox)2As2
Iron-based high temperature superconductivity develops when the `parent'
antiferromagnetic/orthorhombic phase is suppressed, typically by introduction
of dopant atoms. But their impact on atomic-scale electronic structure, while
in theory quite complex, is unknown experimentally. What is known is that a
strong transport anisotropy with its resistivity maximum along the crystal
b-axis, develops with increasing concentration of dopant atoms; this
`nematicity' vanishes when the `parent' phase disappears near the maximum
superconducting Tc. The interplay between the electronic structure surrounding
each dopant atom, quasiparticle scattering therefrom, and the transport
nematicity has therefore become a pivotal focus of research into these
materials. Here, by directly visualizing the atomic-scale electronic structure,
we show that substituting Co for Fe atoms in underdoped Ca(Fe1-xCox)2As2
generates a dense population of identical anisotropic impurity states. Each is
~8 Fe-Fe unit cells in length, and all are distributed randomly but aligned
with the antiferromagnetic a-axis. By imaging their surrounding interference
patterns, we further demonstrate that these impurity states scatter
quasiparticles in a highly anisotropic manner, with the maximum scattering rate
concentrated along the b-axis. These data provide direct support for the recent
proposals that it is primarily anisotropic scattering by dopant-induced
impurity states that generates the transport nematicity; they also yield simple
explanations for the enhancement of the nematicity proportional to the dopant
density and for the occurrence of the highest resistivity along the b-axis