29 research outputs found

    A Novel Pseudopodial Component of the Dendritic Cell Anti-Fungal Response: The Fungipod

    Get PDF
    Fungal pathologies are seen in immunocompromised and healthy humans. C-type lectins expressed on immature dendritic cells (DC) recognize fungi. We report a novel dorsal pseudopodial protrusion, the “fungipod”, formed by DC after contact with yeast cell walls. These structures have a convoluted cell-proximal end and a smooth distal end. They persist for hours, exhibit noticeable growth and total 13.7±5.6 µm long and 1.8±0.67 µm wide at the contact. Fungipods contain clathrin and an actin core surrounded by a sheath of cortactin. The actin cytoskeleton, but not microtubules, is required for fungipod integrity and growth. An apparent rearward flow (225±55 nm/second) exists from the zymosan contact site into the distal fungipod. The phagocytic receptor Dectin-1 is not required for fungipod formation, but CD206 (Mannose Receptor) is the generative receptor for these protrusions. The human pathogen Candida parapsilosis induces DC fungipod formation strongly, but the response is species specific since the related fungal pathogens Candida tropicalis and Candida albicans induce very few and no fungipods, respectively. Our findings show that fungipods are dynamic actin-driven cellular structures involved in fungal recognition by DC. They may promote yeast particle phagocytosis by DC and are a specific response to large (i.e., 5 µm) particulate ligands. Our work also highlights the importance of this novel protrusive structure to innate immune recognition of medically significant Candida yeasts in a species specific fashion

    Gene Expression Signature of DMBA-Induced Hamster Buccal Pouch Carcinomas: Modulation by Chlorophyllin and Ellagic Acid

    Get PDF
    Chlorophyllin (CHL), a water-soluble, semi-synthetic derivative of chlorophyll and ellagic acid (EA), a naturally occurring polyphenolic compound in berries, grapes, and nuts have been reported to exert anticancer effects in various human cancer cell lines and in animal tumour models. The present study was undertaken to examine the mechanism underlying chemoprevention and changes in gene expression pattern induced by dietary supplementation of chlorophyllin and ellagic acid in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by whole genome profiling using pangenomic microarrays. In hamsters painted with DMBA, the expression of 1,700 genes was found to be altered significantly relative to control. Dietary supplementation of chlorophyllin and ellagic acid modulated the expression profiles of 104 and 37 genes respectively. Microarray analysis also revealed changes in the expression of TGFβ receptors, NF-κB, cyclin D1, and matrix metalloproteinases (MMPs) that may play a crucial role in the transformation of the normal buccal pouch to a malignant phenotype. This gene expression signature was altered on treatment with chlorophyllin and ellagic acid. Our study has also revealed patterns of gene expression signature specific for chlorophyllin and ellagic acid exposure. Thus dietary chlorophyllin and ellagic acid that can reverse gene expression signature associated with carcinogenesis are novel candidates for cancer prevention and therapy

    Non-Small Cell Lung Carcinoma Cell Motility, Rac Activation and Metastatic Dissemination Are Mediated by Protein Kinase C Epsilon

    Get PDF
    Background: Protein kinase C (PKC) e, a key signaling transducer implicated in mitogenesis, survival, and cancer progression, is overexpressed in human primary non-small cell lung cancer (NSCLC). The role of PKCe in lung cancer metastasis has not yet been established. Principal Findings: Here we show that RNAi-mediated knockdown of PKCe in H358, H1299, H322, and A549 NSCLC impairs activation of the small GTPase Rac1 in response to phorbol 12-myristate 13-acetate (PMA), serum, or epidermal growth factor (EGF). PKCe depletion markedly impaired the ability of NSCLC cells to form membrane ruffles and migrate. Similar results were observed by pharmacological inhibition of PKCe with eV1-2, a specific PKCe inhibitor. PKCe was also required for invasiveness of NSCLC cells and modulated the secretion of extracellular matrix proteases and protease inhibitors. Finally, we found that PKCe-depleted NSCLC cells fail to disseminate to lungs in a mouse model of metastasis. Conclusions: Our results implicate PKCe as a key mediator of Rac signaling and motility of lung cancer cells, highlighting its potential as a therapeutic target

    EGFR interacts with the fusion protein of respiratory syncytial virus strain 2-20 and mediates infection and mucin expression.

    Get PDF
    Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2-20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore, we hypothesized that the RSV 2-20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2-20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2-20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from "mucogenic" strains. RSV 2-20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease
    corecore