25 research outputs found

    Cooperativity in the thermosome

    No full text

    Backbone dynamics and hydrogen exchange of Pseudomonas aeruginosa ferricytochrome c(551).

    No full text
    A model-free analysis of Pseudomonas aeruginosa ferricytochrome c(551) dynamics based on (15)N R(1), (15)N R(2), and [(1)H]-(15)N heteronuclear nuclear Overhauser effect data is reported. The protein backbone is highly rigid (=0.924+/-0.005) and displays little variation in picosecond-nanosecond time scale dynamics over the structure. The loop structure containing the axial methionine ligand (loop 3) displays anomalous rigidity, which is attributed to its high proline content. Also reported are protection factors calculated from hydrogen-exchange rates. These data reveal that loop 3 residues, including the axial methionine, are protected from exchange as a result of long-range hydrogen-bonding interactions. These results are contrasted with data reported for Saccharomyces cerevisiae iso-1-ferricytochrome c, which displays higher overall flexibility (=0.80+/-0.07), greater variation of dynamics as a function of structure, and low protection factors for loop 3. This analysis reveals that heme proteins with similar functions and topologies may display diverse dynamical properties

    Folding mechanism of Pseudomonas aeruginosa cytochrome c551: role of electrostatic interactions on the hydrophobic collapse and transition state properties.

    No full text
    We report on the folding kinetics of the small 82 residue cytochrome c551from Pseudomonas aeruginosa. The presence of two Trp residues (Trp56 and Trp77) allows the monitoring of fluorescence quenching on refolding in two different regions of the protein. A single His residue (the iron-coordinating His16) permits the study of refolding in the absence of miscoordination events. After identification of the kinetic traps (Pro isomerization and aggregation of denatured protein), overall refolding kinetics is described by two processes: (i) a burstphase collapse (faster than milliseconds) which we show to be a global event leading to a state whose compactness depends on the overall net charge; at the isoeletric pH (4.7), it is maximally compact, while above and below it is more expanded; and (ii) an exponential phase (in the millisecond time range) leading to the native protein via a transition state(s) possibly involving the formation of a specific salt bridge between Lys10 and Glu70, at the contact between the N and C-terminal helices. Comparison with the widely studied horse cytochrome c allows the discussion of similarities and differences in the folding of two proteins which have the same "fold" despite a very low degree of sequence homology (<30 %)

    Snapshots of protein folding. A study on the multiple transition state pathway of cytochrome c(551) from Pseudomonas aeruginosa.

    No full text
    Cytochrome c(551) (cyt c(551)) from Pseudomonas aeruginosa is a small protein (82 residues) that folds via a three-state pathway with the accumulation in the microsecond time-range of a compact collapsed intermediate. The presence of a single His residue, at position 16, permits the study of the refolding at pH 7.0 in the absence of miscoordination events. Here, we report on folding kinetics in the millisecond time-range as a function of urea under different pH conditions. Analysis of this process (over-and-above proline cis-trans isomerization) at pH 7.0, suggests the existence of a multiple transition state pathway in which we postulate three transition states. Taking advantage of site-directed mutagenesis we propose that the first "unfolded-like" transition state (t(1)) originates from the electrostatic properties of the collapsed state, while the second transition state (t(2)) involves the interaction between the N and C-terminal helices and is stabilized by the salt bridge between Lys10 and Glu70 ( approximately 1 kcal mol(-1)). Our results suggest that, contrary to other cytochromes c, the roll-over effect observed for cyt c(551) at low denaturant concentration can be interpreted in terms of a broad energy barrier without population of any intermediates. The third and more "native-like" transition state (M) can be associated with the breaking/formation of the Fe(3+)-Met61 bond. This strong interaction is stabilized by the hydrogen bond between Trp56 and heme propionate 17 (HP-17) as suggested by the increase in the unfolding rate at high denaturant concentration of the Trp56Phe site-directed mutant
    corecore