10 research outputs found

    Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease.

    No full text
    The pattern of neuronal discharge within the basal ganglia is disturbed in Parkinson's disease (PD). In particular, there is a tendency for neuronal elements to synchronise at around 20 Hz in the absence of dopaminergic treatment, whereas this activity can be replaced by spontaneous synchronisation at much higher frequencies (>70 Hz) following dopaminergic treatment [J. Neurosci. 21 (2001) 1033; Brain 126 (2003) 2153]. In two PD patients (3 sides), we show that stimulating the subthalamic area at around 20 Hz exacerbates synchronisation at similar frequencies in the globus pallidus interna, the major output structure of the human basal ganglia. In contrast, stimulating the subthalamic area at >70 Hz suppresses pallidal activity at about 20 Hz. Clinically, stimulation of the subthalamic area at similar high frequencies reverses parkinsonism and forms the basis of therapeutic deep brain stimulation in PD. The results point to a possible common mechanism by which both dopaminergic treatment associated synchronisation of subthalamic activity at very high frequency and synchronisation imposed by therapeutic stimulation of the subthalamic area inhibit an abnormal and potentially deleterious synchronisation of basal ganglia output at around 20 Hz. If this activity is unchecked by synchronisation at higher frequency, then pathological 20-Hz oscillations may cascade through the basal ganglia, increasing at subsequent levels of processing

    Intermuscular coherence in Parkinson's disease: relationship to bradykinesia.

    No full text
    We hypothesised that bradykinesia may be partly due to the failure of the corticomuscular system to engage in high frequency oscillatory activity in Parkinson's disease (PD). In healthy subjects such oscillations are evident in coherence between active muscles at 15--30 Hz. We therefore investigated the effects of therapeutic stimulation of the basal ganglia on this coherence and related it to changes in bradykinesia in the contralateral arm. Increases in coherence at 15--30 Hz and improvements in bradykinesia upon stimulation were correlated (r = 0.564, p < 0.001). This suggests that the basal ganglia modulate oscillatory activity in the corticomuscular system and that impairment of the motor system's ability to engage in synchronised oscillations at high frequency may contribute to bradykinesia in PD
    corecore