3 research outputs found

    FoxO3 Modulates Circadian Rhythms in Neural Stem Cells

    Get PDF
    Both FoxO transcription factors and the circadian clock act on the interface of metabolism and cell cycle regulation and are important regulators of cellular stress and stem cell homeostasis. Importantly, FoxO3 preserves the adult neural stem cell population by regulating cell cycle and cellular metabolism and has been shown to regulate circadian rhythms in the liver. However, whether FoxO3 is a regulator of circadian rhythms in neural stem cells remains unknown. Here, we show that loss of FoxO3 disrupts circadian rhythmicity in cultures of neural stem cells, an effect that is mediated via regulation of Clock transcriptional levels. Using Rev-Erbα-VNP as a reporter, we then demonstrate that loss of FoxO3 does not disrupt circadian rhythmicity at the single cell level. A meta-analysis of published data revealed dynamic co-occupancy of multiple circadian clock components within FoxO3 regulatory regions, indicating that FoxO3 is a Clock-controlled gene. Finally, we examined proliferation in the hippocampus of FoxO3-deficient mice and found that loss of FoxO3 delayed the circadian phase of hippocampal proliferation, indicating that FoxO3 regulates correct timing of NSC proliferation. Taken together, our data suggest that FoxO3 is an integral part of circadian regulation of neural stem cell homeostasis

    Insulin-FOXO3 Signaling Modulates Circadian Rhythms via Regulation of Clock Transcription

    No full text
    Circadian rhythms are responsive to external and internal cues, light and metabolism being among the most important. In mammals, the light signal is sensed by the retina and transmitted to the suprachiasmatic nucleus (SCN) master clock [1], where it is integrated into the molecular oscillator via regulation of clock gene transcription. The SCN synchronizes peripheral oscillators, an effect that can be overruled by incoming metabolic signals [2]. As a consequence, peripheral oscillators can be uncoupled from the master clock when light and metabolic signals are not in phase. The signaling pathways responsible for coupling metabolic cues to the molecular clock are being rapidly uncovered [3-5]. Here we show that insulin-phosphatidylinositol 3-kinase (PI3K)-Forkhead box class O3 (FOXO3) signaling is required for circadian rhythmicity in the liver via regulation of Clock. Knockdown of FoxO3 dampens circadian amplitude, an effect that is rescued by overexpression of Clock. Subsequently, we show binding of FOXO3 to two Daf-binding elements (DBEs) located in the Clock promoter area, implicating Clock as a transcriptional target of FOXO3. Transcriptional oscillation of both core clock and output genes in the liver of FOXO3-deficient mice is affected, indicating a disrupted hepatic circadian rhythmicity. Finally, we show that insulin, a major regulator of FOXO activity [6-9], regulates Clock levels in a PI3K- and FOXO3-dependent manner. Our data point to a key role of the insulin-FOXO3-Clock signaling pathway in the modulation of circadian rhythms
    corecore