10 research outputs found

    Succinic acid production with Actinobacillus succinogenes: rate and yield analysis of chemostat and biofilm cultures

    Get PDF
    BACKGROUND: Succinic acid is well established as bio-based platform chemical with production quantities expecting to increase exponentially within the next decade. Actinobacillus succinogenes is by far the most studied wild organism for producing succinic acid and is known for high yield and titre during production on various sugars in batch culture. At low shear conditions continuous fermentation with A. succinogenes results in biofilm formation. In this study, a novel shear controlled fermenter was developed that enabled: 1) chemostat operation where self-immobilisation was opposed by high shear rates and, 2) in-situ removal of biofilm by increasing shear rates and subsequent analysis thereof. RESULTS: The volumetric productivity of the biofilm fermentations were an order of magnitude more than the chemostat runs. In addition the biofilm runs obtained substantially higher yields. Succinic acid to acetic acid ratios for chemostat runs were 1.28±0.2 g.g-1, while the ratios for biofilm runs started at 2.4 g.g-1 and increased up to 3.3 g.g-1 as glucose consumption increased. This corresponded to an overall yield on glucose of 0.48±0.05 g.g-1 for chemostat runs, while the yields varied between 0.63 g.g-1 and 0.74 g.g-1 for biofilm runs. Specific growth rates (μ) were shown to be severely inhibited by the formation of organic acids, with μ only 12% of μmax at a succinic acid titre of 7 g.L-1. Maintenance production of succinic acid was shown to be dominant for the biofilm runs with cell based production rates (extracellular polymeric substance removed) decreasing as SA titre increases. CONCLUSIONS: The novel fermenter allowed for an in-depth bioreaction analysis of A. succinogenes. Biofilm cells achieve higher SA yields than suspended cells and allow for operation at higher succinic acid titre. Both growth and maintenance rates were shown to drastically decrease with succinic acid titre. The A. succinogenes biofilm process has vast potential, where self-induced high cell densities result in higher succinic acid productivity and yield.http://www.microbialcellfactories.com/am201

    The pentose phosphate pathway leads to enhanced succinic acid flux in biofilms of wild-type Actinobacillus succinogenes

    No full text
    Increased pentose phosphate pathway flux, relative to total substrate uptake flux, is shown to enhance succinic acid (SA) yields under continuous, non-growth conditions of Actinobacillus succinogenes biofilms. Separate fermentations of glucose and xylose were conducted in a custom, continuous biofilm reactor at four different dilution rates. Glucose-6-phosphate dehydrogenase assays were performed on cell extracts derived from in situ removal of biofilm at each steady-state. The results of the assays were coupled to a kinetic model that revealed an increase in oxidative pentose phosphate pathway (OPPP) flux relative to total substrate flux with increasing SA titre, for both substrates. Furthermore, applying metabolite concentration data to metabolic flux models that include the OPPP, revealed similar flux relationships to those observed in the experimental kinetic analysis. A relative increase in OPPP flux produces additional reduction power that enables increased flux through the reductive branch of the TCA cycle, leading to increased SA yields, reduced by-product formation and complete closure of the overall redox balance.National Research Foundation (NRF)http://link.springer.com/journal/2532017-11-30hb2016Chemical Engineerin
    corecore