3 research outputs found

    Quantitative competitive reverse transcription polymerase chain reaction is not a useful method for quantification of CD4 and CD8 cell status during HIV infection

    Get PDF
    BACKGROUND: A polymerase chain reaction (PCR)-based method for quantitating CD4 and CD8 mRNA could provide a means of assessing immune status of AIDS patients and other immunologically compromised persons without requiring large blood draws, and could be exquisitely sensitive. Such a method would also be useful in assessing the immune status of patients retrospectively. RESULTS: Quantitative competitive reverse transcription PCR (QC-RT-PCR) assays were developed for measurement of CD4 and CD8 mRNA. Samples were obtained from HIV-positive and negative patients whose CD4 and CD8 counts had been determined via Flow Cytometry. The quantity of CD4 (n = 13) and CD8 (n = 28) mRNA standardized according to GAPDH mRNA quantities, all determined by QC-RT-PCR, were compared to cell number as determined by flow cytometry. There was no correlation between CD4 and CD8 cell counts and mRNA levels of CD4 and CD8 as determined by QC-RT-PCR. There is no correlation between CD4 and CD8 mRNA levels and the number of cells expressing these proteins on their surface. CONCLUSION: QC-RT-PCR, and related methodologies are not useful substitutes for assessment of CD4 and CD8 cell numbers in HIV-infected persons

    Mutations in matrix and SP1 repair the packaging specificity of a Human Immunodeficiency Virus Type 1 mutant by reducing the association of Gag with spliced viral RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The viral genome of HIV-1 contains several secondary structures that are important for regulating viral replication. The stem-loop 1 (SL1) sequence in the 5' untranslated region directs HIV-1 genomic RNA dimerization and packaging into the virion. Without SL1, HIV-1 cannot replicate in human T cell lines. The replication restriction phenotype in the SL1 deletion mutant appears to be multifactorial, with defects in viral RNA dimerization and packaging in producer cells as well as in reverse transcription of the viral RNA in infected cells. In this study, we sought to characterize SL1 mutant replication restrictions and provide insights into the underlying mechanisms of compensation in revertants.</p> <p>Results</p> <p>HIV-1 lacking SL1 (NLĪ”SL1) did not replicate in PM-1 cells until two independent non-synonymous mutations emerged: G913A in the matrix domain (E42K) on day 18 postinfection and C1907T in the SP1 domain (P10L) on day 11 postinfection. NLĪ”SL1 revertants carrying either compensatory mutation showed enhanced infectivity in PM-1 cells. The SL1 revertants produced significantly more infectious particles per nanogram of p24 than did NLĪ”SL1. The SL1 deletion mutant packaged less HIV-1 genomic RNA and more cellular RNA, particularly signal recognition particle RNA, in the virion than the wild-type. NLĪ”SL1 also packaged 3- to 4-fold more spliced HIV mRNA into the virion, potentially interfering with infectious virus production. In contrast, both revertants encapsidated 2.5- to 5-fold less of these HIV-1 mRNA species. Quantitative RT-PCR analysis of RNA cross-linked with Gag in formaldehyde-fixed cells demonstrated that the compensatory mutations reduced the association between Gag and spliced HIV-1 RNA, thereby effectively preventing these RNAs from being packaged into the virion. The reduction of spliced viral RNA in the virion may have a major role in facilitating infectious virus production, thus restoring the infectivity of NLĪ”SL1.</p> <p>Conclusions</p> <p>HIV-1 evolved to overcome a deletion in SL1 and restored infectivity by acquiring compensatory mutations in the N-terminal matrix or SP1 domain of Gag. These data shed light on the functions of the N-terminal matrix and SP1 domains and suggest that both regions may have a role in Gag interactions with spliced viral RNA.</p
    corecore