28 research outputs found

    Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts

    Get PDF
    INTRODUCTION: Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. METHODS: We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. RESULTS: Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. CONCLUSION: Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers

    An expression signature of syndecan-1 (CD138), E-cadherin and c-met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ

    Get PDF
    INTRODUCTION: Heparan sulphate proteoglycan syndecan-1 modulates cell proliferation, adhesion, migration and angiogenesis. It is a coreceptor for the hepatocyte growth factor receptor c-met, and its coexpression with E-cadherin is synchronously regulated during epithelial-mesenchymal transition. In breast cancer, changes in the expression of syndecan-1, E-cadherin and c-met correlate with poor prognosis. In this study we evaluated whether coexpression of these functionally linked prognostic markers constitutes an expression signature in ductal carcinoma in situ (DCIS) of the breast that may promote cell proliferation and (lymph)angiogenesis. METHODS: Expression of syndecan-1, E-cadherin and c-met was detected immunohistochemically using a tissue microarray in tumour specimens from 200 DCIS patients. Results were correlated with the expression patterns of angiogenic and lymphangiogenic markers. Coexpression of the three prognostic markers was evaluated in human breast cancer cells by confocal immunofluorescence microscopy and RT-PCR. RESULTS: Coexpression and membrane colocalization of the three markers was confirmed in MCF-7 cells. E-cadherin expression decreased, and c-met expression increased progressively in more aggressive cell lines. Tissue microarray analysis revealed strong positive staining of tumour cells for syndecan-1 in 72%, E-cadherin in 67.8% and c-met in 48.6% of DCIS. E-cadherin expression was significantly associated with c-met and syndecan-1. Expression of c-met and syndecan-1 was significantly more frequent in the subgroup of patients with pure DCIS than in those with DCIS and a coexisting invasive carcinoma. Levels of c-met and syndecan-1 expression were associated with HER2 expression. Expression of c-met significantly correlated with expression of endothelin A and B receptors, vascular endothelial growth factor (VEGF)-A and fibroblast growth factor receptor-1, whereas E-cadherin expression correlated significantly with endothelin A receptor, VEGF-A and VEGF-C staining. CONCLUSION: Syndecan-1, E-cadherin and c-met constitute a marker signature associated with angiogenic and lymphangiogenic factors in DCIS. This coexpression may reflect a state of parallel activation of different signal transduction pathways, promoting tumour cell proliferation and angiogenesis. Our findings have implications for future therapeutic approaches in terms of a multiple target approach, which may be useful early in breast cancer progression
    corecore