28 research outputs found

    Identification and functional characterization of two new transcriptional variants of the human p63 gene

    No full text
    p63 belongs to a family of transcription factors, which, while demonstrating striking conservation of functional domains, regulate distinct biological functions. Its principal role is in the regulation of epithelial commitment, differentiation and maintenance programs, during embryogenesis and in adult tissues. The p63 gene has a complex transcriptional pattern, producing two subclasses of N-terminal isoforms (TA and Delta N) which are alternatively spliced at the C-terminus. Here, we report the identification of two new C-terminus p63 variants, we named p63 delta and epsilon, that increase from 6 to 10 the number of the p63 isoforms. Expression analysis of all p63 variants demonstrates a tissue/cell-type-specific nature of p63 alternative transcript expression, probably related to their different cellular functions. We demonstrate that the new p63 variants as Delta N isoforms are active as transcription factors as they have nuclear localization and can modulate the expression of p63 target genes. Moreover, we report that, like Delta Np63 alpha, Delta Np63 delta and e sustain cellular proliferation and that their expression decreases during keratinocyte differentiation, suggesting their involvement in this process. Taken together, our results demonstrate the existence of novel p63 proteins whose expression should be considered in future studies on the roles of p63 in the regulation of cellular functions

    p73 and p63 sustain cellular growth by transcriptional activation of cell cycle progression genes.

    No full text
    Despite extensive studies on the role of tumor suppressor p53 protein and its homologues, p73 and p63, following their overexpression or cellular stress, very little is known about the regulation of the three proteins in cells during physiologic cell cycle progression. We report a role for p73 and p63 in supporting cellular proliferation through the transcriptional activation of the genes involved in G(1)-S and G(2)-M progression. We found that in MCF-7 cells, p73 and p63, but not p53, are modulated during the cell cycle with a peak in S phase, and their silencing determines a significant suppression of proliferation compared with the control. Chromatin immunoprecipitation analysis shows that in cycling cells, p73 and p63 are bound to the p53-responsive elements (RE) present in the regulatory region of cell cycle progression genes. On the contrary, when the cells are arrested in G(0)-G(1), p73 detaches from the REs and it is replaced by p53, which represses the expression of these genes. When the cells move in S phase, p73 is recruited again and p53 is displaced or is weakly bound to the REs. These data open new possibilities for understanding the involvement of p73 and p63 in cancer. The elevated concentrations of p73 and p63 found in many cancers could cause the aberrant activation of cell growth progression genes and therefore contribute to cancer initiation or progression under certain conditions

    Ca2+-dependent K+ efflux regulates deoxycholate-induced apoptosis of BHK-21 and Caco-2 cells

    No full text
    BACKGROUND & AIMS: Deoxycholate (DC) has proapoptotic and tumorigenic effects in different cell types of the gastrointestinal tract. Exposure of BHK-21 (stromal) cells to DC induces Ca2 entry at the plasma membrane, which affects intracellular Ca2 signaling. We assessed whether DC-induced increases in [Ca2] can impinge on plasma membrane properties (eg, ionic conductances) involved in cell apoptosis. METHODS: Single- and doublebarreled microelectrodes were used to measure membrane potential (Vm) and extracellular [K] in BHK-21 fibroblasts and Caco-2 colon carcinoma cells. Apoptosis was assessed by Hoechst labeling, propidium iodide staining, and caspase-3 and caspase-7 assays. RESULTS: DC-induced cell membrane hyperpolarization was directly measured with intracellular microelectrodes in both cell lines. Diverse Ca2 mobilizing agents, such as membrane receptor agonists, an inhibitor of the sarco/endoplasmic reticulum Ca2 adenosine triphosphatase and a Ca2 ionophore, also induced increases in Vm. Removal of extracellular Ca2 reduced the agonist- and DC-induced membrane hyperpolarization by approximately 15% and 60%, respectively. These findings indicate a prominent role for Ca2 entry at the plasma membrane in the action of this bile salt. Blockade of Ca2- activated K conductances by charybdotoxin and apamin reduced DC-induced hyperpolarization by 75% and 64% in BHK-21 and Caco-2 cells, respectively. These inhibitors also reduced the DC-induced increase in extracellular [K] by 75% and cell apoptosis by approximately 50% in both cell lines. CONCLUSIONS: Ca2-dependent K conductance is an important regulator of DC-induced apoptosis in stromal and colon cancer cells

    Pilot study on circulating miRNA signature in children with obesity born small for gestational age and appropriate for gestational age

    No full text
    Background: Children born small for gestational age (SGA) are at increased risk of metabolic dysfunction. Dysregulation of specific microRNAs (miRNAs) contributes to aberrant gene expression patterns underlying metabolic dysfunction. Objective: We aimed to determine and compare circulating miRNA (c-miRNA) profile of SGA and appropriate for gestational age (AGA) children with obesity and with normal weight, in order to identify biomarkers for early detection of increased risk of developing metabolic dysfunction in SGA and AGA children with obesity. Methods: Small non-coding RNAs from serum of 15 SGA children with obesity (OB-SGA), 10 SGA children with normal weight (NW-SGA), 17 AGA children with obesity (OB-AGA) and 12 AGA children with normal weight (NW-AGA) (mean age 11.2 Â± 2.6) have been extracted and sequenced in order to detect and quantify miRNA expression profiles. Results: RNA-seq analyses showed 28 miRNAs dysregulated in OB-SGA vs. NW-SGA and 19 miRNAs dysregulated in OB-AGA vs. NW-AGA. Among these, miR-92a-3p, miR-122-5p, miR-423-5p, miR-484, miR-486-3p and miR-532-5p were up regulated, and miR-181b-5p was down regulated in both OB-SGA and OB-AGA compared with normal weight counterparts. Pathway analysis and miRNA target prediction suggested that these miRNAs were particularly involved in insulin signalling, glucose transport, insulin resistance, cholesterol and lipid metabolism. Conclusion: We identified a specific profile of c-miRNAs in SGA and AGA children with obesity compared with SGA and AGA children with normal weight. These c-miRNAs could represent specific biomarkers for early detection of increased risk of developing metabolic dysfunction in SGA and AGA children with obesity

    TRIM8 modulates p53 activity to dictate cell cycle arrest

    No full text
    p53 is a central hub in controlling cell proliferation. To maintain genome integrity in response to cellular stress, p53 directly regulates the transcription of genes involved in cell cycle arrest, DNA repair, apoptosis and/or senescence. An array of post-translational modifications and protein-protein interactions modulates its stability and activities in order to avoid malignant transformation. However, to date, it is still not clear how cells decide their own fate in response to different types of stress. Here we describe that the human TRIM8 protein, a member of the TRIM family, is a new modulator of the p53-mediated tumor suppression mechanism. We show that under stress conditions, such as UV exposure, p53 induced the expression of TRIM8, which, in turn, stabilized p53, leading to cell cycle arrest and reduction of cell proliferation through enhancement of CDKN1A (p21) and GADD45 expression. TRIM8 silencing reduced the capacity of p53 to activate genes involved in cell cycle arrest and DNA repair in response to cellular stress. Concurrently, TRIM8 overexpression induced the degradation of the MDM2 protein, the principal regulator of p53 stability. Co-immunoprecipitation experiments showed that TRIM8 physically interacted with p53, impairing its interaction with MDM2. Altogether, our results reveal a previously unknown regulatory pathway controlling p53 activity and suggest TRIM8 as a novel therapeutic target to enhance p53 tumor suppressor activity
    corecore