15 research outputs found

    Differences in Gene Expression Profiles and Phenotypes of Differentiated SH-SY5Y Neurons Stably Overexpressing Mitochondrial Ferritin

    Get PDF
    Mitochondrial ferritin (FtMt) is an iron-transport protein with ferroxidase properties localized to mitochondria. Levels are generally low in all tissues, while increasing the expression of FtMt in neuronal-like cells has been shown to be protective. To determine whether FtMt has potential as a therapeutic approach, there remains the question of how much FtMt is protective. To address this issue, we transfected SH-SY5Y neuroblastoma cells with a FtMt expression plasmid and isolated cell lines with stable expression of FtMt at high, medium and low levels. Using these cell lines, we examined effects of FtMt on neuronal phenotype, neuroprotective activity and gene expression profiles. The phenotypic properties of high, medium and low FtMt expressors were compared with native untransfected SH-SY5Y cells after differentiation with retinoic acid to a neuronal phenotype. Overexpression of FtMt, even in low expressing cells, showed significant protection from oxidative stress induced by hydrogen peroxide or cobalt chloride. Higher levels of FtMt expression did not appear to offer greater protection, and did not have toxic consequences to cells, even though there were significantly more aggregated mitochondria in the highest expressing clone. The phenotypes differed between cell clones when assessed by cell growth, neurite outgrowth, and expression of neuronal proteins including those associated with neurodegenerative diseases. Microarray analysis of high, medium and negative FtMt-expressing cells identified different patterns of expression of certain genes associated with oxidative stress and neuronal development, amongst others. Validation of microarray analyses was carried out by real time polymerase chain reaction. The results showed significant differences in expression of thioredoxin-interacting protein (TXNIP) and microsomal glutathione transfer-1 (MGST-1), which can have critical roles in the regulation of oxidative stress. Differences in expression of calcitonin-related polypeptide alpha (CALCA), growth differentiation factor-15 (GDF-15) and secretogranin II (SCG2) were also observed. Our findings indicate that even low levels of increased FtMt expression can be protective possibly by alterations of some oxidative stress-related and growth factor genes, while high levels of expression did not appear to offer greater protection from oxidative stress or induce significant toxicity in cells. These experiments provide supporting data that increasing FtMt might be a feasible strategy for therapeutics in certain neurodegenerative and neurological diseases

    Characterization of lysosomal proteins Progranulin and Prosaposin and their interactions in Alzheimer\u27s disease and aged brains: increased levels correlate with neuropathology.

    Get PDF
    Progranulin (PGRN) is a protein encoded by the GRN gene with multiple identified functions including as a neurotrophic factor, tumorigenic growth factor, anti-inflammatory cytokine and regulator of lysosomal function. A single mutation in the human GRN gene resulting in reduced PGRN expression causes types of frontotemporal lobar degeneration resulting in frontotemporal dementia. Prosaposin (PSAP) is also a multifunctional neuroprotective secreted protein and regulator of lysosomal function. Interactions of PGRN and PSAP affect their functional properties. Their roles in Alzheimer\u27s disease (AD), the leading cause of dementia, have not been defined. In this report, we examined in detail the cellular expression of PGRN in middle temporal gyrus samples of a series of human brain cases (n = 45) staged for increasing plaque pathology. Immunohistochemistry showed PGRN expression in cortical neurons, microglia, cerebral vessels and amyloid beta (Aβ) plaques, while PSAP expression was mainly detected in neurons and Aβ plaques, and to a limited extent in astrocytes. We showed that there were increased levels of PGRN protein in AD cases and corresponding increased levels of PSAP. Levels of PGRN and PSAP protein positively correlated with amyloid beta (Aβ), with PGRN levels correlating with phosphorylated tau (serine 205) levels in these samples. Although PGRN colocalized with lysosomal-associated membrane protein-1 in neurons, most PGRN associated with Aβ plaques did not. Aβ plaques with PGRN and PSAP deposits were identified in the low plaque non-demented cases suggesting this was an early event in plaque formation. We did not observe PGRN-positive neurofibrillary tangles. Co-immunoprecipitation studies of PGRN from brain samples identified only PSAP associated with PGRN, not sortilin or other known PGRN-binding proteins, under conditions used. Most PGRN associated with Aβ plaques were immunoreactive for PSAP showing a high degree of colocalization of these proteins that did not change between disease groups. As PGRN supplementation has been considered as a therapeutic approach for AD, the possible involvement of PGRN and PSAP interactions in AD pathology needs to be further considered

    Identification of juvenility-associated genes in the mouse hepatocytes and cardiomyocytes.

    Get PDF
    Young individuals possess distinct properties that adults do not. The juvenile animals show higher activities for growth, healing, learning and plasticity than adults. The machinery for establishing these juvenile properties is not fully understood. To better understand the molecular constituents for the above properties, we performed a comprehensive transcriptome analysis of differently aged cells of mice by high-throughput sequencing and identified the genes selectively highly expressed in the young cells. These genes, collectively called as juvenility-associated genes (JAGs), show significant enrichments in the functions such as alternative splicing, phosphorylation and extracellular matrix (ECM). This implies the juvenescence might be achieved by these functions at the cell level. The JAG mutations are associated with progeria syndromes and growth disorders. Thus, the JAGs might organize the juvenile property of young animals and analysis of JAGs may provide scientific and therapeutic approaches toward treating the genetic diseases

    Patterns of Expression of Purinergic Receptor P2RY12, a Putative Marker for Non-Activated Microglia, in Aged and Alzheimer\u27s Disease Brains.

    Get PDF
    Neuroinflammation is considered a key pathological process in neurodegenerative diseases of aging, including Alzheimer\u27s disease (AD). Many studies have defined phenotypes of reactive microglia, the brain-resident macrophages, with different antigenic markers to identify those potentially causing inflammatory damage. We took an alternative approach with the goal of characterizing the distribution of purinergic receptor P2RY12-positive microglia, a marker previously defined as identifying homeostatic or non-activated microglia. We examined the expression of P2RY12 by dual-color light and fluorescence immunohistochemistry using sections of middle temporal gyrus from AD, high plaque and low plaque non-demented cases in relation to amyloid beta (Aβ) plaques and phosphorylated tau, markers of pathology, and HLA-DR, IBA-1, CD68, and progranulin, microglial phenotype markers. In low plaque cases, P2RY12-positive microglia mostly had non-activated morphologies, while the morphologies of P2RY12-positive microglia in AD brains were highly variable, suggesting its expression could encompass a wider range of phenotypes than originally hypothesized. P2RY12 expression by microglia differed depending on the types of plaques or tangles they were associated with. Areas of inflammation characterized by lack of P2RY12-positive microglia around mature plaques could be observed, but many diffuse plaques showed colocalization with P2RY12-positive microglia. Based on these results, P2RY12 expression by microglia should not be considered solely a marker of resting microglia as P2RY12 immunoreactivity was identifying microglia positive for CD68, progranulin and to a limited extent HLA-DR, markers of activation

    Microglial Progranulin: Involvement in Alzheimer’s Disease and Neurodegenerative Diseases

    Full text link
    Neurodegenerative diseases such as Alzheimer’s disease have proven resistant to new treatments. The complexity of neurodegenerative disease mechanisms can be highlighted by accumulating evidence for a role for a growth factor, progranulin (PGRN). PGRN is a glycoprotein encoded by the GRN/Grn gene with multiple cellular functions, including neurotrophic, anti-inflammatory and lysosome regulatory properties. Mutations in the GRN gene can lead to frontotemporal lobar degeneration (FTLD), a cause of dementia, and neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Both diseases are associated with loss of PGRN function resulting, amongst other features, in enhanced microglial neuroinflammation and lysosomal dysfunction. PGRN has also been implicated in Alzheimer’s disease (AD). Unlike FTLD, increased expression of PGRN occurs in brains of human AD cases and AD model mice, particularly in activated microglia. How microglial PGRN might be involved in AD and other neurodegenerative diseases will be discussed. A unifying feature of PGRN in diseases might be its modulation of lysosomal function in neurons and microglia. Many experimental models have focused on consequences of PGRN gene deletion: however, possible outcomes of increasing PGRN on microglial inflammation and neurodegeneration will be discussed. We will also suggest directions for future studies on PGRN and microglia in relation to neurodegenerative diseases

    Localization of Thioredoxin-Interacting Protein in Aging and Alzheimer’s Disease Brains

    Full text link
    Thioredoxin-Interacting Protein (TXNIP) has been shown to have significant pathogenic roles in many human diseases, particularly those associated with diabetes and hyperglycemia. Its main mode of action is to sequester thioredoxins, resulting in enhanced oxidative stress. The aim of this study was to identify if cellular expression of TXNIP in human aged and Alzheimer’s disease (AD) brains correlated with pathological structures. This study employed fixed tissue sections and protein extracts of temporal cortex from AD and aged control brains. Studies employed light and fluorescent immunohistochemical techniques using the monoclonal antibody JY2 to TXNIP to identify cellular structures. Immunoblots were used to quantify relative amounts of TXNIP in brain protein extracts. The major finding was the identification of TXNIP immunoreactivity in selective neuronal populations and structures, particularly in non-AD brains. In AD brains, less neuronal TXNIP but increased numbers of TXNIP-positive plaque-associated microglia were observed. Immunoblot analyses showed no significant increase in levels of TXNIP protein in the AD samples tested. In conclusion, this study identified altered patterns of expression of TXNIP in human brains with progression of AD pathology

    Localization of Thioredoxin-Interacting Protein in Aging and Alzheimer’s Disease Brains

    Full text link
    Thioredoxin-Interacting Protein (TXNIP) has been shown to have significant pathogenic roles in many human diseases, particularly those associated with diabetes and hyperglycemia. Its main mode of action is to sequester thioredoxins, resulting in enhanced oxidative stress. The aim of this study was to identify if cellular expression of TXNIP in human aged and Alzheimer’s disease (AD) brains correlated with pathological structures. This study employed fixed tissue sections and protein extracts of temporal cortex from AD and aged control brains. Studies employed light and fluorescent immunohistochemical techniques using the monoclonal antibody JY2 to TXNIP to identify cellular structures. Immunoblots were used to quantify relative amounts of TXNIP in brain protein extracts. The major finding was the identification of TXNIP immunoreactivity in selective neuronal populations and structures, particularly in non-AD brains. In AD brains, less neuronal TXNIP but increased numbers of TXNIP-positive plaque-associated microglia were observed. Immunoblot analyses showed no significant increase in levels of TXNIP protein in the AD samples tested. In conclusion, this study identified altered patterns of expression of TXNIP in human brains with progression of AD pathology

    Identification of juvenility-associated genes in the mouse hepatocytes and cardiomyocytes

    Full text link
    Abstract Young individuals possess distinct properties that adults do not. The juvenile animals show higher activities for growth, healing, learning and plasticity than adults. The machinery for establishing these juvenile properties is not fully understood. To better understand the molecular constituents for the above properties, we performed a comprehensive transcriptome analysis of differently aged cells of mice by high-throughput sequencing and identified the genes selectively highly expressed in the young cells. These genes, collectively called as juvenility-associated genes (JAGs), show significant enrichments in the functions such as alternative splicing, phosphorylation and extracellular matrix (ECM). This implies the juvenescence might be achieved by these functions at the cell level. The JAG mutations are associated with progeria syndromes and growth disorders. Thus, the JAGs might organize the juvenile property of young animals and analysis of JAGs may provide scientific and therapeutic approaches toward treating the genetic diseases

    Loss of Lysosomal Proteins Progranulin and Prosaposin Associated with Increased Neurofibrillary Tangle Development in Alzheimer Disease.

    Full text link
    Alzheimer disease (AD) is a progressive neurodegenerative disease causing cognitive decline in the aging population. To develop disease-modifying treatments, understanding the mechanisms behind the pathology is important, which should include observations using human brain samples. We reported previously on the association of lysosomal proteins progranulin (PGRN) and prosaposin (PSAP) with amyloid plaques in non-demented aged control and AD brains. In this study, we investigated the possible involvement of PGRN and PSAP in tangle formation using human brain tissue sections of non-demented aged control subjects and AD cases and compared with cases of frontotemporal dementia with granulin (GRN) mutations. The study revealed that decreased amounts of PGRN and PSAP proteins were detected even in immature neurofibrillary tangles, while colocalization was still evident in adjacent neurons in all cases. Results suggest that neuronal loss of PGRN preceded loss of PSAP as tangles developed and matured. The GRN mutation cases exhibited almost complete absence of PGRN in most neurons, while PSAP signal was preserved. Although based on correlative data, we suggest that reduced levels of PGRN and PSAP and their interaction in neurons might predispose to accumulation of p-Tau protein
    corecore