6,269 research outputs found
Modulational instability of spatially broadband nonlinear optical pulses in four-state atomic systems
The modulational instability of broadband optical pulses in a four-state
atomic system is investigated. In particular, starting from a recently derived
generalized nonlinear Schr\"odinger equation, a wave-kinetic equation is
derived. A comparison between coherent and random phase wave states is made. It
is found that the spatial spectral broadening can contribute to the nonlinear
stability of ultra-short optical pulses. In practical terms, this could be
achieved by using random phase plate techniques.Comment: 9 pages, 3 figures, to appear in Phys. Rev.
Massive "spin-2" theories in arbitrary dimensions
Here we show that in arbitrary dimensions there are two families of
second order Lagrangians describing massive "spin-2" particles via a
nonsymmetric rank-2 tensor. They differ from the usual Fierz-Pauli theory in
general. At zero mass one of the families is Weyl invariant. Such massless
theory has no particle content in and gives rise, via master action, to a
dual higher order (in derivatives) description of massive spin-2 particles in
where both the second and the fourth order terms are Weyl invariant,
contrary to the linearized New Massive Gravity. However, only the fourth order
term is invariant under arbitrary antisymmetric shifts. Consequently, the
antisymmetric part of the tensor propagates at large momentum as
instead of . So, the same kind of obstacle for the
renormalizability of the New Massive Gravity reappears in this nonsymmetric
higher order description of massive spin-2 particles.Comment: 11 pages, 0 figure
Laser scattering by density fluctuations of ultra-cold atoms in a magneto-optical trap
We study the spectrum of density fluctuations in the ultra-cold gas of
neutral atoms, confined in a magneto-optical trap. We determine the
corresponding amplitude and spectra of laser light scattered by this medium. We
derive an expression for the dynamical structure function, by using a test
particle method. We propose to use the collective laser scattering as a
diagnostic method for the microscopic properties of the ultra-cold matter. This
will also allow us to check on the atomic correlations which are mediated by
the collective mean field inside the gas.Comment: J. Phys. B (in press
Massive spin-2 particles via embedment of the Fierz-Pauli equations of motion
Here we obtain alternative descriptions of massive spin-2 particles by an
embedding procedure of the Fierz-Pauli equations of motion. All models are free
of ghosts at quadratic level although most of them are of higher order in
derivatives. The models that we obtain can be nonlinearly completed in terms of
a dynamic and a fixed metric. They include some massive gravities
recently considered in the literature. In some cases there is an infrared (no
derivative) modification of the Fierz-Pauli mass term altogether with higher
order terms in derivatives. The analytic structure of the propagator of the
corresponding free theories is not affected by the extra terms in the action as
compared to the usual second order Fierz-Pauli theory.Comment: 13 page
- …