273 research outputs found

    Visualization of Endogenous ERK1/2 in Cells with a Bioorthogonal Covalent Probe

    Get PDF
    The RAS–RAF–MEK–ERK pathway has been intensively studied in oncology, with RAS known to be mutated in ∼30% of all human cancers. The recent emergence of ERK1/2 inhibitors and their ongoing clinical investigation demands a better understanding of ERK1/2 behavior following small-molecule inhibition. Although fluorescent fusion proteins and fluorescent antibodies are well-established methods of visualizing proteins, we show that ERK1/2 can be visualized via a less-invasive approach based on a two-step process using inverse electron demand Diels–Alder cycloaddition. Our previously reported trans-cyclooctene-tagged covalent ERK1/2 inhibitor was used in a series of imaging experiments following a click reaction with a tetrazine-tagged fluorescent dye. Although limitations were encountered with this approach, endogenous ERK1/2 was successfully imaged in cells, and “on-target” staining was confirmed by over-expressing DUSP5, a nuclear ERK1/2 phosphatase that anchors ERK1/2 in the nucleus

    Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ras-dependent ERK1/2 MAP kinase signaling pathway plays a central role in cell proliferation control and is frequently activated in human colorectal cancer. Small-molecule inhibitors of MEK1/MEK2 are therefore viewed as attractive drug candidates for the targeted therapy of this malignancy. However, the exact contribution of MEK1 and MEK2 to the pathogenesis of colorectal cancer remains to be established.</p> <p>Methods</p> <p>Wild type and constitutively active forms of MEK1 and MEK2 were ectopically expressed by retroviral gene transfer in the normal intestinal epithelial cell line IEC-6. We studied the impact of MEK1 and MEK2 activation on cellular morphology, cell proliferation, survival, migration, invasiveness, and tumorigenesis in mice. RNA interference was used to test the requirement for MEK1 and MEK2 function in maintaining the proliferation of human colorectal cancer cells.</p> <p>Results</p> <p>We found that expression of activated MEK1 or MEK2 is sufficient to morphologically transform intestinal epithelial cells, dysregulate cell proliferation and induce the formation of high-grade adenocarcinomas after orthotopic transplantation in mice. A large proportion of these intestinal tumors metastasize to the liver and lung. Mechanistically, activation of MEK1 or MEK2 up-regulates the expression of matrix metalloproteinases, promotes invasiveness and protects cells from undergoing anoikis. Importantly, we show that silencing of MEK2 expression completely suppresses the proliferation of human colon carcinoma cell lines, whereas inactivation of MEK1 has a much weaker effect.</p> <p>Conclusion</p> <p>MEK1 and MEK2 isoforms have similar transforming properties and are able to induce the formation of metastatic intestinal tumors in mice. Our results suggest that MEK2 plays a more important role than MEK1 in sustaining the proliferation of human colorectal cancer cells.</p

    Histone deacetylase 1 and 2 differentially regulate apoptosis by opposing effects on extracellular signal-regulated kinase 1/2

    Get PDF
    Histone deacetylases (HDACs) are epigenetic regulators that are important for the control of various pathophysiological events. We found that HDAC inhibitors completely abolished transforming growth factor-β1 (TGF-β1)-induced apoptosis in AML-12 and primary mouse hepatocytes. Expression of a dominant-negative mutant of HDAC1 or downregulation of HDAC1 by RNAi both suppressed TGF-β1-induced apoptosis. In addition, overexpression of HDAC1 enhanced TGF-β1-induced apoptosis, and the rescue of HDAC1 expression in HDAC1 RNAi cells restored the apoptotic response of cells to TGF-β1. These data indicate that HDAC1 functions as a proapoptotic factor in TGF-β1-induced apoptosis. In contrast, downregulation of HDAC2 by RNAi increased spontaneous apoptosis and markedly enhanced TGF-β1-induced apoptosis, suggesting that HDAC2 has a reciprocal role in controlling cell survival. Furthermore, inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) by MEK1 inhibitor PD98059 or expression of a kinase-dead mutant of MEK1 restored the apoptotic response to TGF-β1 in HDAC1 RNAi cells. Strikingly, HDAC2 RNAi caused an inhibition of ERK1/2, and the spontaneous apoptosis can be abolished by reactivation of ERK1/2. Taken together, our data demonstrate that HDAC1 and 2 reciprocally affect cell viability by differential regulation of ERK1/2; these observations provide insight into the roles and potential mechanisms of HDAC1 and 2 in apoptosis

    Disruption of AP1S1, Causing a Novel Neurocutaneous Syndrome, Perturbs Development of the Skin and Spinal Cord

    Get PDF
    Adaptor protein (AP) complexes regulate clathrin-coated vesicle assembly, protein cargo sorting, and vesicular trafficking between organelles in eukaryotic cells. Because disruption of the various subunits of the AP complexes is embryonic lethal in the majority of cases, characterization of their function in vivo is still lacking. Here, we describe the first mutation in the human AP1S1 gene, encoding the small subunit σ1A of the AP-1 complex. This founder splice mutation, which leads to a premature stop codon, was found in four families with a unique syndrome characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratodermia (MEDNIK). To validate the pathogenic effect of the mutation, we knocked down Ap1s1 expression in zebrafish using selective antisens morpholino oligonucleotides (AMO). The knockdown phenotype consisted of perturbation in skin formation, reduced pigmentation, and severe motility deficits due to impaired neural network development. Both neural and skin defects were rescued by co-injection of AMO with wild-type (WT) human AP1S1 mRNA, but not by co-injecting the truncated form of AP1S1, consistent with a loss-of-function effect of this mutation. Together, these results confirm AP1S1 as the gene responsible for MEDNIK syndrome and demonstrate a critical role of AP1S1 in development of the skin and spinal cord

    Loss of c-Met Disrupts Gene Expression Program Required for G2/M Progression during Liver Regeneration in Mice

    Get PDF
    conditional knockout mice to determine the effects of c-Met dysfunction in hepatocytes on kinetics of liver regeneration. primary hepatocytes and partially restored expression levels of mitotic cell cycle regulators albeit to a lesser degree as compared to control cultures.In conclusion, our results assign a novel non-redundant function for HGF/c-Met signaling in regulation of G2/M gene expression program via maintaining a persistent Erk1/2 activation throughout liver regeneration

    Association of ultra-rare coding variants with genetic generalized epilepsy: A case\u2013control whole exome sequencing study

    Get PDF
    Objective: We aimed to identify genes associated with genetic generalized epilepsy (GGE) by combining large cohorts enriched with individuals with a positive family history. Secondarily, we set out to compare the association of genes independently with familial and sporadic GGE. Methods: We performed a case\u2013control whole exome sequencing study in unrelated individuals of European descent diagnosed with GGE (previously recruited and sequenced through multiple international collaborations) and ancestry-matched controls. The association of ultra-rare variants (URVs; in 18&nbsp;834 protein-coding genes) with epilepsy was examined in 1928 individuals with GGE (vs. 8578 controls), then separately in 945 individuals with familial GGE (vs. 8626 controls), and finally in 1005 individuals with sporadic GGE (vs. 8621 controls). We additionally examined the association of URVs with familial and sporadic GGE in two gene sets important for inhibitory signaling (19&nbsp;genes encoding \u3b3-aminobutyric acid type A [GABAA] receptors, 113&nbsp;genes representing the GABAergic pathway). Results: GABRG2 was associated with GGE (p&nbsp;=&nbsp;1.8&nbsp; 7&nbsp;10 125), approaching study-wide significance in familial GGE (p&nbsp;=&nbsp;3.0&nbsp; 7&nbsp;10 126), whereas no gene approached a significant association with sporadic GGE. Deleterious URVs in the most intolerant subgenic regions in genes encoding GABAA receptors were associated with familial GGE (odds ratio [OR]&nbsp;=&nbsp;3.9, 95% confidence interval [CI]&nbsp;=&nbsp;1.9\u20137.8, false discovery rate [FDR]-adjusted p&nbsp;=.0024), whereas their association with sporadic GGE had marginally lower odds (OR&nbsp;=&nbsp;3.1, 95% CI&nbsp;=&nbsp;1.3\u20136.7, FDR-adjusted p&nbsp;=.022). URVs in GABAergic pathway genes were associated with familial GGE (OR&nbsp;=&nbsp;1.8, 95% CI&nbsp;=&nbsp;1.3\u20132.5, FDR-adjusted p&nbsp;=.0024) but not with sporadic GGE (OR&nbsp;=&nbsp;1.3, 95% CI&nbsp;=.9\u20131.9, FDR-adjusted p&nbsp;=.19). Significance: URVs in GABRG2 are likely an important risk factor for familial GGE. The association of gene sets of GABAergic signaling with familial GGE is more prominent than with sporadic GGE
    corecore