21,848 research outputs found
Magnetization reversals in a disk-shaped small magnet with an interface
We consider a nanodisk possessing two coupled materials with different
ferromagnetic exchange constant. The common border line of the two media passes
at the disk center dividing the system exactly in two similar half-disks. The
vortex core motion crossing the interface is investigated with a simple
description based on a two-dimensional model which mimics a very thin real
material with such a line defect. The main result of this study is that,
depending on the magnetic coupling which connects the media, the vortex core
can be dramatically and repeatedly flipped from up to down and vice versa by
the interface. This phenomenon produces burst-like emission of spin waves each
time the switching process takes place.Comment: 11 pages, 10 figure
Emergence of skyrmion lattices and bimerons in chiral magnetic thin films with nonmagnetic impurities
Skyrmions are topologically protected field structures with particlelike characteristics that play important roles in several areas of science. Recently, skyrmions have been directly observed in chiral magnets. Here, we investigate the effects of pointlike nonmagnetic impurities on the distinct initial states (random or helical ones) and on the formation of the skyrmion crystal in a discrete lattice. Using Monte Carlo techniques, we have found that even a small percentage of spin vacancies present in the chiral magnetic thin film considerably affects the skyrmion order. The main effects of impurities are somewhat similar to thermal effects. The presence of these spin vacancies also induces the formation of bimerons in both the helical and skyrmion states. We also investigate how adjacent impurities forming a hole affect the skyrmion crystal
Conditions for free magnetic monopoles in nanoscale square arrays of dipolar spin ice
We study a modified frustrated dipolar array recently proposed by M\"{o}ller
and Moessner [Phys. Rev. Lett. \textbf{96}, 237202 (2006)], which is based on
an array manufactured lithographically by Wang \emph{et al.} [Nature (London)
\textbf{439}, 303 (2006)] and consists of introducing a height offset
between islands (dipoles) pointing along the two different lattice directions.
The ground-states and excitations are studied as a function of . We have
found, in qualitative agreement with the results of M\"{o}ller and Moessner,
that the ground-state changes for , where ( is the
lattice parameter or distance between islands). In addition, the excitations
above the ground-state behave like magnetic poles but confined by a string,
whose tension decreases as increases, in such a way that for
its value is around 20 times smaller than that for . The system exhibits
an anisotropy in the sense that the string tension and magnetic charge depends
significantly on the directions in which the monopoles are separated. In turn,
the intensity of the magnetic charge abruptly changes when the monopoles are
separated along the direction of the longest axis of the islands. Such a gap is
attributed to the transition from the anti to the ferromagnetic ground-state
when .Comment: 6 pages, 7 figures. Published versio
Remarks on Charged Vortices in the Maxwell-Chern-Simons Model
We study vortex-like configuration in Maxwell-Chern-Simons Electrodynamics.
Attention is paid to the similarity it shares with the Nielsen-Olesen solutions
at large distances. A magnetic symmetry between a point-like and an
azimuthal-like current in this framework is also pointed out. Furthermore, we
address the issue of a neutral and spinless particle interacting with a charged
vortex, and obtain that the Aharonov-Casher-type phase depends upon mass and
distance parameters.Comment: New refs. added. Version accepted for publication in Phys. Lett.
- …